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Abstract

We study whether large-scale information interventions can improve college applicant out-
comes. Using nationwide surveys, we document widespread information frictions and the
prevalence of application mistakes. To address these frictions, we conducted a field experiment
that provided applicants with personalized information on admission chances and program
characteristics. The intervention increased assignment probabilities for previously unmatched
students by 44% and increased placement into higher-ranked programs by 20%. Following
these results and with the collaboration of policymakers, we successfully scaled up the policy
nationwide. Our findings suggest that personalized information policies implemented at scale
can effectively reduce application mistakes and improve student outcomes.
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1 Introduction

The choice of college and major is a key driver of earnings inequality over the life cycle (Altonji

et al., 2014). Beyond financial constraints, information frictions may hinder students from mak-

ing optimal education decisions. While evidence from small-scale college counseling programs

suggest they can effectively mitigate these barriers, the increasing popularity of centralized admis-

sion systems has further facilitated the market-wide implementation of interventions providing

targeted, personalized information to students. Yet, it remains unclear whether such information

policies can successfully scale.

Many small-scale programs have failed to replicate when implemented at a broader level, un-

dermining the value of empirical research in the eyes of policymakers. Although several explana-

tions for the so-called “scale-up problem” have been proposed—ranging from statistical inference

issues to unrepresentativeness of the experimental population and situation (Al-Ubaydli et al.,

2017)—these challenges remain largely unresolved. Information-based policies in education mar-

kets are not immune to such concerns. When implemented broadly, these may alter application

behavior in ways that generate congestion effects, particularly in the presence of limited capacities

and correlated preferences, thereby diminishing their effectiveness. Nevertheless, the ability to

leverage college admission platforms to automate the delivery of personalized information offers

a promising path forward, as such automation can help circumvent two common barriers to scale:

quality drops and diseconomies of scale in implementation costs (Davis et al., 2017).

This paper investigates the unique scale-up opportunities and challenges offered by informa-

tion policies in college admissions, leveraging a multi-year collaboration with policy-makers. First,

we develop a model of students’ college application decisions and propose a taxonomy of applica-

tion mistakes. Second, in collaboration with Chile’s Ministry of Education (MINEDUC), we design

and administer large-scale surveys to measure the prevalence of these mistakes. Third, to assess

whether information policies can mitigate them, we implement a natural field experiment that di-

rectly addresses the scale-up challenges identified in Al-Ubaydli et al. (2017). Finally, we use the

nationwide rollout of the intervention to assess its effectiveness at scale.

To establish a conceptual framework, we begin by developing a taxonomy of application mis-

takes, defined as discrepancies between a student’s optimal and submitted application list. Using

the standard model of students’ college application decisions, we identify four sources of mistakes

that information policies could alleviate at scale: (i) biased beliefs about admission probabilities,
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leading to over- and under-confidence mistakes; (ii) incorrect information about program charac-

teristics; (iii) unawareness of available options; and (iv) misunderstanding of the mechanism.

We then turn to measuring the prevalence of the application mistakes identified in our taxon-

omy and the relevance of their underlying drivers. To do so, we analyze large-scale surveys de-

signed and implemented over a five-year collaboration with MINEDUC, summarized in Figure 1.

Initial surveys show that a significant fraction of students misreport their preferences even when

restrictions on the length of their lists are not binding, resulting in payoff-relevant application mis-

takes. In particular, close to 40% of applicants do not list their most preferred program, and 11%

of them would have benefited from doing so as they had a strictly positive admission probability.

Similarly, approximately 28% of students do not apply to programs they prefer over being unas-

signed. Among them, at least 4% would have been strictly better off by including such programs

in their application. By analyzing elicited beliefs, we find that these mistakes are mainly driven

by biased beliefs about admission chances: pessimistic students omit their most preferred pro-

grams, while optimistic students neglect to list safety options. These biases are more pronounced

among students from public schools and with lower test scores. Addressing these mistakes could

therefore play a crucial role in reducing inequalities in educational opportunities.

Figure 1: Timeline of Interventions

To assess whether information policies can help mitigate these mistakes, we continued our

collaboration with MINEDUC and designed a natural field experiment. In Chile, as in many coun-

tries, the college admissions process is centralized on a single application platform, which we used

to gather students’ initial rank-ordered lists (ROLs) and create personalized websites accessible

throughout the application window. These websites provided relevant information over different

margins, including general details about programs on each student’s list, personalized admission

probabilities and risk assessments, and customized recommendations for other potentially suitable
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majors. The information shown to students was randomized across four treatment arms, enabling

us to evaluate the impact of reducing information frictions on various decision-making margins.

Our results show that providing personalized information about admission probabilities and

the risk of remaining unassigned significantly influences students’ application decisions. Specifi-

cally, students who received this information were 10% more likely to modify their rank-ordered

lists compared to those in the control group. These adjustments led to notable improvements in

students’ admission outcomes. For instance, initially unassigned students were 44% more likely

to gain admission to a program after receiving the information. Students who were initially as-

signed also benefit from the information, experiencing a 20% increase in the probability of being

matched to a program ranked higher than the one where they would have been assigned to given

their initial list. Furthermore, we find that these effects persist in the longer run, as the interven-

tion increases the likelihood that students remain enrolled in the same program two years later by

34%. These effects suggest that our intervention effectively decreased the incidence of application

mistakes, particularly over-confidence mistakes, improving students’ outcomes.

This large-scale intervention was crafted to carefully address the three sources of the “scale-up”

problem highlighted by Al-Ubaydli et al. (2017)—unrepresentativeness of the experimental pop-

ulation, unrepresentativeness of the situation, and statistical inference issues. First, we designed

the experiment to be as informative as possible for future scale-up efforts by closely mirroring the

target population and real-world conditions. The information provided was directly randomized

within the target population, i.e. the sample of early-applicants, ensuring that the experimental

sample was representative of the relevant population with respect to both treatment effects and

participation costs. The opportunity to run the experiment directly within the actual, high-stake,

college admissions procedure also allowed us to avoid introducing any artificial margins of choice.

Additionally, by leveraging the centralized admission mechanism to automatize the personalized

information we provide, the intervention we crafted is not threatened by quality drops and dis-

play economies of scale, ensuring its scalability. On top of these ex-ante steps, and recognizing

the risks of scaling up a policy based on false positive findings, we went beyond assessing results

with respect to their statistical significance. In particular, we evaluate their Post-Study Probability

(Maniadis et al., 2014), which measures the likelihood that a finding is valid once it reaches statis-

tical significance. Our results support the decision to scale up the policy. Finally, acknowledging

that the experimental results may still fail to scale due to potential congestion effects,1 we also

1Specifically, if a large number of initially unmatched students respond to the information by shifting their applica-
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investigate the underlying drivers of the observed changes in student assignment. We find that

the combination of ample seat availability and heterogeneity in student preferences allowed the

intervention to improve assignment outcomes. We further exploit the properties of the centralized

assignment mechanism and the experimentally collected data to simulate the effect of scaling-up

the policy and assess the magnitude of such congestion effects. Our findings indicate that the infor-

mation policy would still yield benefits if implemented system-wide, suggesting that congestion

effects are not large enough to offset its benefits.

In light of these findings, MINEDUC implemented the information policy nationwide in 2023.

The evaluation of the scale-up policy, performed using an encouragement design through What-

sApp messages, confirms most of the aforementioned results. We find that providing real-time per-

sonalized information about students’ admission probabilities, alongside warning messages and

cutoff scores for all programs in the centralized system—resembling a one-shot implementation

of the iterative Deferred Acceptance (DA) algorithm—causally improves students’ outcomes, in

line with the results of our field experiment. Specifically, by reducing primarily over-confidence and

under-confidence mistakes, we estimate that the policy roughly doubles the probability that initially

unmatched students get admitted to the centralized system and the probability to improve their

assignment relative to their initial match. This translates into a substantial decrease in unmatched

and undermatched students. Improvements in assignment outcomes persist at the enrollment

stage, as students who get assigned thanks to the policy are three times more likely to enroll in

their assigned program. Furthermore, by observing students’ preferences and beliefs before and

after the policy implementation, we find that these improvements are primarily driven by changes

in beliefs concerning admission probabilities at the bottom of their submitted list rather than at the

top, reducing the incidence of biased beliefs on students’ application decisions.

Overall, our work demonstrates that well-designed information policies—those that equip stu-

dents with personalized insights into their admission prospects—can significantly reduce applica-

tion mistakes at scale, lowering the number of unmatched and undermatched students. By seam-

lessly integrating with the centralized admissions mechanism, our intervention showcases how

market design can drive meaningful improvements in student outcomes at minimal cost. These

findings underscore the power of leveraging existing structures to enact scalable, cost-effective,

and transformative policy solutions in education.

tions to the same program, the latter might become oversubscribed. As a result, despite modifying their rank-ordered
list in response to the information provided, some students would still remain unmatched.
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Related Literature. Our paper is related to three strands of literature. First, we contribute to the

literature emphasizing the importance of information policies in alleviating barriers to higher edu-

cation access. Interest in such interventions grew after evidence that financial constraints alone do

not fully explain why high-achieving, low-income students do not apply to selective universities

(Hoxby and Avery, 2012). In response, many interventions have focused on small-scale mentoring

and counseling programs, which have been shown to significantly improve college enrollment

outcomes (Oreopoulos et al., 2017; Carrell and Sacerdote, 2017; Castleman et al., 2014; Castle-

man and Goodman, 2018; Oreopoulos and Ford, 2019). However, such “boots-on-the-ground”

approaches are costly and may be difficult to scale. In contrast, the results of light-touch inter-

ventions that provide information about options’ characteristics, financial aid, and costs are much

more mixed (Hoxby et al., 2013; Gurantz et al., 2021; Hyman, 2020), despite evidence that stu-

dents update their beliefs after receiving information (Baker et al., 2018; Wiswall and Zafar, 2015b;

Bleemer and Zafar, 2018).

These results may suggest that information needs to be provided through in-person interac-

tions to be successful, which lowers the scalability of such policies. However, an alternative ex-

planation for their mixed results is the lack of personalization, as these light-touch interventions

often provide general information about college options and broad application recommendations,

failing to account for individual students’ circumstances and preferences. To address this limita-

tion, we design and evaluate a unique intervention that leverages data from centralized college

admission platforms to deliver highly personalized information and targeted alerts, ensuring that

students receive personalized guidance based on their individual circumstances and increasing

the likelihood of making better application decisions.

Second, we contribute to an emerging literature studying whether and how education interven-

tions can successfully scale by addressing the recently highlighted "scale-up problem" (List, 2022).

For example, Davis et al. (2017) develop a method that uses experimental variation to estimate

how quality and cost evolve as programs such as tutoring scale up. Similarly, Agostinelli et al.

(2025) evaluate a national mentoring program in Mexico and find that enhanced mentor training

significantly improves the program’s effectiveness at scale.

Although tutoring and mentoring programs could yield sizable benefits, information-based

interventions—due to their low marginal costs and scalability—are especially attractive for large-

scale implementation. Yet, recent work underscores important congestion externalities that can

attenuate their gains. Bobba et al. (2023) implement an RCT providing academic performance
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feedback to prospective high school students in Mexico City and demonstrate that, under full roll-

out, oversubscribed school capacities would partially offset the policy’s positive effects. Similarly,

Allende et al. (2019) combine a small-scale RCT with a structural model to evaluate an information

intervention targeted at parents, finding that capacity constraints would significantly diminish the

welfare gains of a citywide expansion.

We contribute to this literature by providing model-free evidence from both a randomized

information intervention targeted at college applicants and its nationwide scale-up. Unlike pre-

vious studies, we find that our policy remains highly effective even at scale. This success lies in

three key elements of its design. First, by leveraging centralized admission mechanisms—which

streamline data collection and enable the automated distribution of personalized information—we

ensure the scalability of the intervention while avoiding two of the most common pitfalls of large-

scale interventions: quality deterioration and diseconomies of scale (Davis et al., 2017). Second, by

conducting a thorough analysis of the randomized control trial—identifying the key drivers of its

effects—we carefully refined the information policy to maximize its effectiveness at scale. Finally,

contrasting with Allende et al. (2019) who provide vertical information about schools’ quality, we

provide personalized information that is unlikely to lead students to shift their applications in the

same direction, minimizing congestion effects. Analyzing the changes in admission triggered by

the intervention, we highlight the role of both programs’ sufficient capacities and heterogeneity in

students’ preferences in the successful scale-up of the program.

Finally, our paper contributes to the growing literature on behavioral economics in education

market design; see Rees-Jones and Shorrer (2023) for an excellent review. Several studies in this lit-

erature have documented application mistakes in settings that use variants of DA. Two prominent

types are obvious mistakes, where students only list the full-fee version of a program despite being

eligible for a reduced-fee alternative (Artemov et al., 2017; Shorrer and Sóvágó, 2021; Hassidim

et al., 2020), and skipping, where students omit their favorite programs from their list (Hakimov

et al., 2023; Chrisander and Bjerre-Nielsen, 2023). These mistakes are typically payoff-irrelevant

and stem from underconfidence or misunderstanding of the mechanism’s rules. At the same time,

other studies have emphasized the role of overconfidence and limited awareness in shaping ap-

plication behavior. For instance, Arteaga et al. (2022) show that, in the context of school choice,

families often submit overly risky applications by not listing enough options, driven by overcon-

fidence about admission chances, lack of awareness of alternatives and search costs. Consistent

with our findings, the authors show that providing information on available programs can im-
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prove outcomes by helping families make more informed decisions.

We make several contributions to this literature. First, we provide a unifying taxonomy of ap-

plication mistakes, expanding their sources beyond those typically studied in the literature. Sec-

ond, we use large-scale survey data to provide lower-bounds on their prevalence and relevance.

Third, we identify that strategic behavior coupled with information frictions and biased beliefs are

the main drivers of these mistakes. Finally, we highlight how a highly-scalable information policy

can mitigate these application mistakes.

Overview. The remainder of this paper is organized as follows. Section 2 introduces the Chilean

college admissions system, the data, and our taxonomy of mistakes. Section 3 describes the preva-

lence and relevance of application mistakes and sheds light on their potential drivers. Section 4

presents our field experiment and the evaluation of its impact. Section 5 reports the results of the

scaled-up policy implementation. Finally, Section 6 concludes.

2 Background and Taxonomy of Application Mistakes

In this section, we first present the most relevant institutional details of the Chilean college admis-

sions system. We then describe the different data sources used throughout the paper. Finally, we

provide a taxonomy of application mistakes.

2.1 Institutional Details

We focus on the centralized part of Chile’s tertiary education system, which encompasses the coun-

try’s most selective universities.2 Hereafter, we refer to this as the admissions system. To partici-

pate, students are required to take a series of standardized tests: the Prueba de Selección Universitaria

(PSU) until 2020, the Prueba de Transición (PDT) from 2021 to 2022, and the Prueba de Acceso a la Ed-

ucación Superior (PAES) starting in 2023. While Math and Language are mandatory, students can

select either Sciences or History & Social Sciences as their elective.3 In addition to these test scores,

students receive two additional scores based on their high school performance: one derived from

their average grades during high school (Notas de Enseñanza Media (NEM)) and another reflecting

2See Kapor et al. (2020) and Larroucau and Rios (2023) for a more general description of tertiary education in Chile
and additional institutional details. As of 2023, 45 out of the 58 universities in Chile participated in the centralized
admission system.

3In 2023, an additional, more advanced, Math test was added to the admission process. See Appendix D.1 for more
details on the changes implemented in 2023.
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their relative position within their cohort (Ranking de Notas (Rank)). Each program offered by the

institutions participating in the centralized system announces the weights assigned to these com-

ponents, which are then used to calculate a program-specific application score for each student.

After scores are published, students can access an online platform to submit their applications

in the form of a Rank-Ordered List (ROL) of up to ten programs.4 DEMRE, the Chilean equiva-

lent of the College Board, collects these applications, checks students’ eligibility in each of their

listed programs and, if eligible, computes their program-specific application scores. Applicants to

each program are then ranked based on these scores. The final assignment is determined by an

algorithm that takes into account students’ ROL as well as programs’ rankings and capacities and

relies on a variant of the DA algorithm, whereby ties on students’ scores are not broken (Rios et al.,

2021). As a result, programs may exceed their capacities only if there are ties for their last seat. We

refer to the application score of the last admitted student as the cutoff of each program.

2.2 Data

We combine a panel of administrative data on the admissions process with survey data that we

collected to analyze students’ mistakes. The administrative data includes information about stu-

dents (socio-economic characteristics, scores, and applications), programs (weights, capacities, and

admission requirements), and admission outcomes (i.e., whether each application was valid and

whether the student was admitted or wait-listed) from 2020 to 2023.

To complement this administrative data, we conducted three nationwide surveys in 2020, 2022,

and 2023 in collaboration with MINEDUC and DEMRE. These surveys were designed to elicit stu-

dents’ preferences, beliefs, and to characterize the drivers of application mistakes. To this end,

these surveys included three main modules: (i) preferences, (ii) beliefs, and (iii) understanding of

the admission process. We describe each module and include its most relevant questions in Ap-

pendix A.2.5 These surveys were also carefully timed to capture students’ beliefs and preferences

before key moments in the admissions process. In 2020, 2022 and 2023, MINEDUC and DEMRE

emailed the surveys to students shortly after the application deadline but before the publication

of assignment results, so students knew their scores and submitted ROLs but had not yet learned

their admission outcomes when completing the surveys. In 2023, we also implemented a baseline

survey before the release of the national test results. Since students had not yet applied to the cen-

4Students apply directly to programs, i.e. university-major pairs. In 2023, MINEDUC increased the number of
programs students can list to 20.

5The complete translations of the surveys are available upon request.
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tralized system, this survey elicited their preferences and beliefs regarding hypothetical programs.

2.3 Application Behavior and Taxonomy of Mistakes

In this section, we introduce a framework of application behavior under incomplete information

and use it to provide a taxonomy of application mistakes that we will study throughout the paper.

We follow the model of students’ applications under strategic reporting introduced by Agarwal

and Somaini (2018). Let J = {1, ..., J} be the set of programs, I = {1, ..., I} be the set of students,

and Xi = {Xij}j∈J be a matrix that gathers characteristics of student i, program j ∈ J , and their

interaction. For instance, Xij may include student i’s gender, program j’s tuition, and the distance

between student i’s home and program j’s campus. Furthermore, let vi(Xi) = {vij(Xij)}j∈J ∈ RJ

be the vector of indirect utilities that student i derives from attending each program.

As previously discussed, when applying to college, students must choose an ordered subset

of programs to apply to. To formalize this, let R denote the set of all possible rank-ordered lists

(ROLs) of programs in J . With a slight abuse of notation, we represent each ROL R ∈ R as

R =
{
r1, . . . , r|R|

}
, with rk ∈ J for all k ∈ {1, . . . , |R|} and k < l implying that student i ranks

program rk higher than program rl. Moreover, let Li : R → [0, 1]J be the function mapping each

ROL to student i’s vector of beliefs about their admission chances at each program in J under

rational expectations. The set of optimal rank-ordered lists for student i corresponds to those

maximizing their expected utility, i.e., :6

R∗
i (Xi,Li,J ) =

R ∈ R : R ∈ argmax
R′∈R,

|R′|≤K, R′⊆J

vi(Xi) · Li(R
′)− ci

(
R′)

 (1)

where · represents the dot product between two vectors, K is the maximum number of pro-

grams that students are allowed to rank, and ci(R) is the cost faced by student i from submit-

ting a rank-ordered list R. The set R∗
i (Xi,Li,J ) ⊆ R in (1) includes all ROLs that maximize

student i’s expected utility, assuming accurate knowledge about program characteristics, correct

beliefs about admission chances, and awareness of all the available programs. Hence, we say

that student i makes a payoff-relevant application mistake upon submitting a rank-ordered list R̃ if

R̃ /∈ R∗
i (Xi,Li,J ) and, consequently, there exists an alternative ROL R ∈ R∗

i (Xi,Li,J ) ⊆ R such

6We define optimal behavior as the one corresponding to expected utility maximization. Thus, we abstract away
from recent work exploring non-standard preferences such as risk aversion, expected loss aversion, among others.
See Rees-Jones and Shorrer (2023) for a comprehensive review.
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that

vi(Xi) · Li(R̃)− ci(R̃) < vi(Xi) · Li(R)− ci (R) . (2)

Based on this definition, application mistakes can be classified into two categories based on stu-

dents’ strategic behavior. On the one hand, a student i who behaves strategically—i.e., who sub-

mits a list that maximizes their expected utility, as in Equation (1)—may still make an application

mistake if they (i) have incorrect information about program characteristics, Xi ; (ii) miscalculate

the admission probabilities associated with their list, Li(·) ; or (iii) are unaware of certain programs

in J .7 While these mistakes are not mutually exclusive, we analyze them separately. On the other

hand, a student i who acts non-strategically may also make an application mistake if they submit

a ROL based on a criterion that differs from expected utility maximization, leading to a different

report.

2.3.1 Mistakes by Strategic Students

Mistakes on Assignment Probabilities. As defined in Agarwal and Somaini (2018), students

hold rational expectations over their admission probabilities if they (i) know their vector of program-

specific admission scores, (ii) accurately estimate the distribution of other students’ scores, (iii)

correctly infer others’ application strategies, and (iv) understand how the assignment mechanism

translates these scores and strategies into outcomes. Consequently, they form correct beliefs about

their admission chances for each program in their rank-ordered list. Since this is a cognitively

demanding task, students may hold biased beliefs about their admission probabilities. Formally,

we say that student i makes a mistake on assignment probabilities if they submit a rank-ordered list

R̃ ∈ R∗
i (Xi, L̃i,J ) that is strictly dominated by a ROL R ∈ R∗

i (Xi,Li,J ) relative to the rational

expectation probabilities Li (i.e., Equation (2) holds), where R∗
i (Xi, L̃i,J ) is the set of optimal

ROLs that arises from solving Equation (1) considering student i’s biased beliefs about their ad-

mission chances L̃i.

Biases in students’ beliefs can lead to mistakes in either direction. On the one hand, students

may be overly optimistic, exhibiting a positive bias in their assessment of their admission chances.

As a result, they may wrongly believe that they will be admitted to one of the programs they have

already ranked, perceiving no benefit in adding a safety program to their list. This may potentially

7Note that, while determining the optimal ROL may be cognitively demanding, Chade and Smith (2006) provide
a simple and intuitive algorithm to solve for the portfolio that maximizes students’ expected utility when the cost is a
function of the number of programs included in the ROL.
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lead them to an over-confidence mistake, increasing students’ risk of resulting unmatched. On the

other hand, students may be overly pessimistic, exhibiting a negative bias in their perceived ad-

mission chances. In this case, they might wrongly believe they have no chance of being admitted to

a program they prefer, leading them to omit it from their ROL, even when they are not constrained

by its length. This behavior could result in an under-confidence mistake, potentially causing students

to forgo options that are preferable and attainable.

Beyond misestimating their admission probabilities, students may also misunderstand how

the assignment mechanism operates. For instance, they may fail to recognize that DA sequentially

processes their rank-ordered list and that they should rank programs in decreasing order of utility.

This misunderstanding can result in ordering mistakes, where less-preferred programs are ranked

above more desirable ones where students might have been admitted. Both under-confidence and

ordering mistakes can lead to undermatching, where students receive placements in programs they

prefer less than others they could have realistically secured.

Mistakes on Valuations. Information frictions may also lead students to have incorrect infor-

mation about programs’ characteristics such as their costs, expected earnings, and employment

rates (Wiswall and Zafar, 2015a; Bleemer and Zafar, 2018). As a result, students may misper-

ceive the indirect utility associated to each program, which may generate sub-optimal applica-

tions. Formally, we say that student i makes a mistake on valuations if they submit a rank-ordered

list R̃ ∈ R∗
i (X̃i,Li,J ) that is strictly dominated by a ROL R ∈ R∗

i (Xi,Li,J ) (i.e., Equation (2)

holds), where R∗
i (X̃i,Li, ,J ) is the set of optimal ROLs that arises from solving Equation (1) while

holding incorrect information about programs characteristics, X̃i.

Mistakes on Awareness. The mistakes described above assume that students are aware of all

programs in the centralized system and choose their rank-ordered list from the full set of programs,

J . In practice, however, students may only know a subset of programs, potentially leading them

to suboptimal choices. Formally, we say that student i makes a mistake on awareness if they submit

a rank-ordered list R̃ ∈ R∗
i (Xi,Li, J̃i) that is strictly dominated by some R ∈ R∗

i (Xi,Li,J ),

where J̃i ⊂ J . Note that such mistakes could also be driven by biased beliefs about admission

probabilities. For instance, if search is costly, students may decide to stop their search if they

believe that they would be admitted with high enough probability to at least one of the programs

they are currently aware of (Arteaga et al., 2022).
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2.3.2 Mistakes by Non-Strategic Students.

Regardless of how students perceive (Xi,Li,Ji), they may submit a rank-ordered list that max-

imizes an objective other than their expected utility (as defined in Equation (1)). A prominent

example of this behavior is truth-telling, where a student ranks programs solely based on their

preferences, without accounting for admission probabilities or application costs. Formally, we say

that student i makes a truth-telling mistake if they submit a rank-ordered list R̃ ∈ R̃(Xi,J ) that is

strictly dominated by some R ∈ R∗
i (Xi,Li,J ), where

R̃(Xi,J ) =

R ∈ R : R ∈ argmax
R′∈R,

|R′|≤K, R′⊆J

vi(Xi) · 1⃗(R′)

 , (3)

and 1⃗(R′) ∈ {0, 1}J is a vector indicating the programs included in R′, with entries equal to one

for programs in R′ and zero otherwise.

Note that for students who prefer strictly fewer than K programs over being unassigned (i.e.,

those for whom R̃ ∈ R̃(Xi,J ) satisfies
∣∣∣R̃∣∣∣ < K), submitting such a rank-ordered list R̃ ⊆

R∗
i (Xi,Li,J ) is undominated under the student-proposing Deferred Acceptance algorithm (Haeringer

and Klijn, 2009). However, students who prefer more than K programs may benefit from strategi-

cally selecting them based on their admission probabilities to maximize their expected utility.

2.3.3 Discussion

Our taxonomy provides a structured micro-foundation for the occurrence of the obvious mistakes

previously studied in the literature (Artemov et al., 2017; Shorrer and Sóvágó, 2021), linking them

to specific information frictions and deviations from expected utility maximization. For instance,

our model can rationalize obvious mistakes as resulting from students being unaware of programs

they should clearly prefer (i.e., mistakes on awareness), having biased beliefs about their chances

of admission (i.e., mistakes on admission probabilities), or misperceiving key characteristics of these

programs (i.e., mistakes on valuations).

We also want to highlight that having incorrect information about program characteristics and

biased beliefs about admission probabilities are necessary but not sufficient conditions for having

application mistakes, since these deviations need to be (i) large enough, (ii) in the relevant pro-

grams (programs the students prefer to their outside option), and (iii) over characteristics with

a high enough preference weight, such that correcting beliefs could lead to strict improvements
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in their expected utility. For instance, if students care mostly about non-pecuniary elements, in-

forming them about returns associated to different majors might not impact their choices (Wiswall

and Zafar (2015a)). In addition, note that we define mistakes from a static perspective given stu-

dents’ current preferences and beliefs at the time of the application. Although there is evidence

that students’ valuations over programs and beliefs about their admission chances might change

over time due to learning,8 we consider interventions that are implemented during the application

process, making it unlikely that dynamic effects are relevant for our analysis.

3 Evidence of Mistakes

A key challenge in identifying the application mistakes described above is that they are not directly

observable in administrative data. To address this, we conducted several large-scale nationwide

surveys designed to elicit students’ preferences, beliefs about program characteristics, and percep-

tions of their admission chances.9 In this section, we use these survey data to present empirical

evidence on the prevalence and underlying drivers of the different types of mistakes made by

strategic students.10

3.1 Mistakes on Admission Probabilities

As discussed in Section 2.3, mistakes on admission probabilities fall into three categories: under-

confidence, ordering, and over-confidence mistakes. Fully characterizing these mistakes would require

eliciting students’ valuations, their beliefs about admission chances across all programs, and the

costs associated with submitting applications. Since collecting such comprehensive data is in-

feasible, we designed surveys to capture students’ perceptions of a carefully selected subset of

programs. These survey data, combined with the assumption that application costs are small—

which reflects the Chilean setting, where applications are free but may involve a small cognitive

cost—enable us to establish lower bounds on the prevalence of each type of mistake, which we

summarize in Table 1.

8See for instance Narita (2018) for school choice settings and Arcidiacono et al. (2016), Fu (2014), and Larroucau and
Rios (2023) for college admissions.

9Details of these surveys, including translations of key questions, are provided in Appendix A.
10We also explore mistakes by non-strategic students and, specifically, mistakes by truth-tellers. We defer the results

from this analysis to Appendix B.3 for completeness.
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Table 1: Prevalence of Mistakes on Admission Probabilities

N %
Panel A: Top-True Preferences (N=10,390)

Misreport - Exclude 3264 31.41
Ex-Ante Under-confidence Mistake 265 8.12
Ex-Post Under-confidence Mistake 220 6.74

Misreport - Order 891 8.58
Ex-Ante Ordering Mistake 197 22.11
Ex-Post Ordering Mistake 162 18.18

Panel B: Bottom-True Preferences (N=7,311)
Misreport - Exclude 2033 27.81

Ex-Ante Over-confidence Mistake 85 4.18
Ex-Post Over-confidence Mistake 55 2.71

NOTES. This table provides lower-bounds on the share of students making different types of mis-
takes. Panel A is restricted to the sample of short-list students who were asked about their top-true
preference (2020 survey), while panel B focuses on students who were asked about their bottom-true
preference (2022 survey). In both cases, we include all short-list survey respondents who completed
the survey, provided consistent answers regarding their true top preference, and are not PACE.

Under-confidence and Ordering Mistakes. A student makes an under-confidence mistake if (i) they

skip a program they prefer over those they listed, (ii) they have a positive probability of admission

to that program, and (iii) the constraint on the length of their list is not binding. Similarly, a student

makes an ordering mistake if conditions (ii) and (iii) hold, but instead of omitting the program, they

rank it below a less-preferred option. Our survey allows us to identify one such program: the

student’s top-true preference. If a short-list student has a strictly positive chance of admission at

their top-true preference, their expected utility would be strictly higher if they placed this program

at the top of their ranked-ordered list. Thus, skipping it constitutes an under-confidence mistake,

while ranking it below less-preferred options constitutes an ordering mistake. Since students may

exclude or misrank multiple programs that meet conditions (i) and (ii)—and we only elicit their

most-preferred one—our estimates provide a lower bound on the prevalence of these mistakes.11

Panel A in Table 1 provides a characterization of under-confidence and ordering mistakes.

First, we observe that 39.99% of short-list students misreport their top-true preference: 78.54%

of them exclude it from their rank-ordered list, while the remainder includes it, but do not rank

11A challenge to measure mistakes using students’ top-true preference is that they may incorrectly interpret the
hypothetical scenario posited by our survey question. Indeed, when asked why they skipped their reported top true
preference, some students declare that they did so because of their low chances of graduation or of the program’s cost.
These reasons are inconsistent with the definition of top-true preference because these characteristics should enter the
indirect utility and be captured in the students’ preference order. Thus, we take a conservative approach to analyze those
mistakes, restricting the sample to students who either did not skip their top-true preference or listed “low chances of
admission” as the reason for skipping it. They represent 67% of survey respondents.
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it first.12 Second, among students who skipped their top-true preference, 8.12% had a positive

admission probability, and 6.74% would have been admitted, making ex-ante and ex-post under-

confidence mistakes, respectively. Finally, among students who misranked their top-true prefer-

ence, 22.11% (18.18%, resp.) had a positive admission probability (an application score above the

cutoff, resp.) but were assigned to a program they ranked higher, thus making an ex-ante (ex-post,

resp.) ordering mistake. Overall, we estimate that at least 11.1% of short-list students who misreport

their top-true preference made a mistake. Since this estimate only provides a lower bound, it sug-

gests that a substantial fraction of students make under-confidence or ordering mistakes, indicating

that these mistakes are sizable in our setting.

Over-confidence. A student makes an over-confidence mistake if (i) they skip a program that

they prefer to being unassigned and for which they have a positive admission probability, (ii) they

face a positive risk of being unassigned, and (iii) the constraint on the length of their list is not

binding. As the set of programs students prefer to the outside option is likely to be large, it is

not feasible to gather an exhaustive list. To address this, we ask students about their bottom-true

preference, defined as any program not included in their list that they would prefer over being

unassigned. Consequently, this analysis only provides a lower-bound on the prevalence of over-

confidence mistakes, similar to the mistakes discussed above.

Panel B in Table 1 presents the results for over-confidence mistakes. We find that 27.81% of short-

list students exclude their bottom-true preference from their rank-ordered list. Among them, 4.18%

face a positive risk of being unassigned and have a strictly positive probability of admission to this

program, making an ex-ante over-confidence mistake. Additionally, 2.71% have an application

score that exceeds the admission cutoff for their bottom-true program while still facing a positive

risk of being unassigned, resulting in an ex-post over-confidence mistake.13 These mistakes are

particularly concerning because they are highly consequential. While under-confidence and or-

dering mistakes primarily affect the quality of assigned programs, over-confidence mistakes can

result in students being unmatched by the centralized system. Given the substantial monetary re-

turns associated with university enrollment (Hastings et al., 2013), failing to secure a spot can have

lasting educational and economic consequences, making these mistakes especially impactful.

12Note that students for whom the constraint on the length of their list is binding may also make an ordering mistake.
However, since we focus on providing lower bounds for these mistakes, and nearly 90% of students are short-list
students, we omit these cases for simplicity.

13Note that, as students may be affected by the field experiment we discuss in Section 4, we exclude students who
received one of our information treatments from this analysis.
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Main Driver: Biased Beliefs. Understanding the drivers of mistakes is essential to design effec-

tive information policies and provide students with tools to improve their applications. To this

end, we analyze the extent to which biases in beliefs on admission probabilities explain mistakes

on assignment probabilities.14 Specifically, we used our surveys to elicit students’ beliefs about their

admission probabilities for a subset of programs, including their top-true and bottom-true prefer-

ences, as well as their belief about their overall probability of being assigned. Using these reported

beliefs, we compute biases in students’ perceptions by taking the difference between their elicited

beliefs and their rational-expectation probabilities. Consequently, positive bias values indicate op-

timism (over-confidence), while negative bias values reflect pessimism (under-confidence).15

In Table 2, we report the results of linear probability models in which the dependent variable

is a dummy equal to one if the student made a specific type of mistake, and zero otherwise. The

main variables of interest are the bias η at the top- and bottom-true preferences and the bias in the

overall assignment probability η̄. To capture the differential effects of optimism and pessimism

on mistakes, we consider the bias separately depending on whether it is positive or negative.16

We additionally control for students’ demographic characteristics such as their gender, score, and

region of residence and, consistent with the above analyses, we focus on short-list students and

exclude survey respondents whose top-/bottom-true preference is not valid.

Columns (1) and (2) show that students who are more optimistic about their chances of admis-

sion to their top true preference are significantly less likely to make under-confidence and ordering

mistakes. Conversely, students with greater pessimism are significantly more likely to make these

mistakes. Notably, the effect of pessimism is substantially larger than that of optimism, suggest-

ing that pessimism is the primary driver of under-confidence and ordering mistakes. Column

(3) reveals a similar pattern for biases at the bottom true preference, where lower optimism and

higher pessimism about admission chances significantly increase the likelihood of over-confidence

mistakes. Finally, Column (4) highlights the role of overall biases in admission assessments, show-

ing that optimistic students are significantly more prone to over-confidence mistakes. Altogether,

these results indicate that biased beliefs are relevant drivers of application mistakes, underlining

14In Appendix B.1, we further analyze the drivers of these biases.
15We describe the computation of their rational-expectation probabilities in Appendix C.3). Formally, we denote by

p̃ij and pij the elicited belief and the rational-expectation admission probability of student i in program j, respectively,
and we denote the bias as ηij = p̃ij − pij . Similarly, ρ̃i = 1 −

∏
r∈R(1 − p̃r) and ρi = 1 −

∏
r∈R(1 − pr) denote the

elicited and rational-expectation overall probability of student i getting assigned in any preference of their ROL R, and
η̄i = ρ̃i − ρi captures the bias on the overall admission probability.

16We define the positive and negative parts of the bias as η̄+
ij = η̄ij1{η̄ij>0} and η̄−

ij = −η̄ij1{η̄ij<0}. As a result,
η̄ij = η̄+

ij − η̄−
ij . Finally, we define ρ̄+i and ρ̄−i accordingly.
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Table 2: Effect of Biased Beliefs on Mistakes on Admission Probabilities

Underconfidence Ordering Overconfidence
(1) (2) (3) (4)

Optimism Bias - Top True −0.014∗ −0.028∗∗∗

(0.008) (0.007)
Pessimism Bias - Top True 0.231∗∗∗ 0.113∗∗∗

(0.011) (0.010)
Optimism Bias - Bottom True −0.056∗∗∗

(0.021)
Pessimism Bias - Bottom True 0.030

(0.023)
Optimism Bias - Overall 0.772∗∗∗

(0.024)
Pessimism Bias - Overall −0.011

(0.022)

Mean 0.03 0.022 0.038 0.038
Demographics Yes Yes Yes Yes
Observations 7,411 7,411 1,458 1,458

NOTES. Columns (1) and (2) use data from the 2020 survey, while Columns (3) and (4) use data from
the 2022 survey. In both cases, the sample includes all survey respondents who are not PACE, are short-
list, provided consistent answers, and reported a top/bottom true preference for which they satisfy the
application requirements. Significance reported: ∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01.

the potential for policies correcting such biases to improve students’ outcomes.

3.2 Mistakes on Valuations and Awareness

Measuring mistakes in valuations and awareness presents two key challenges. First, it requires

assessing students’ misperception of program characteristics that significantly affect their indirect

utilities. Second, measuring awareness requires identifying programs—including their attributes

and admission chances—that students may be willing to attend but are not aware of. We address

the former by focusing on expected earnings, which are one of the primary drivers of college

choices (Arcidiacono et al., 2012). For the latter, we leverage our survey design, which elicits

students’ beliefs about program characteristics and admission chances for a randomly selected

program based on their reported preferences.17 This randomization increases the likelihood of

capturing a program the student might reasonably apply to but has not yet considered, allowing

us to better assess the role of limited awareness in shaping application decisions.

17For each student, this random program is drawn from a distribution of second-reported programs, conditional on
their top-reported program, excluding those already listed in the ROL.
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Figure 2: Knowledge about Average Income
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Mistakes on Valuations. In Figure 2, we report the distribution of knowledge about expected

earnings for the different elicited programs, separating by level of knowledge (ranging from none

to full). We observe that a substantial fraction of students reports being poorly informed, even for

programs they included in their ROL. For instance, close to 15% of students report being poorly or

not informed at all about their expected earnings for their top reported program, while over 37% do

so for their bottom reported preference. These results suggest that information frictions regarding

key program characteristics are widespread, which is likely to lead to mistakes on valuations.18

Mistakes on Awareness. Figure 2 shows that close to 45% of students declare having no informa-

tion regarding their expected earnings at the random program, which is substantially higher than

the reported level of misinformation for other programs known to be in the student’s awareness set

(i.e., their reported and true preferences). This result suggests that a significant fraction of students

might not be aware of all the programs available, potentially leading to mistakes on awareness.

4 Randomized Information Intervention

In collaboration with MINEDUC, we designed and implemented an intervention to provide stu-

dents with personalized information during the 2022 college admissions process. To do so, we

created a customized website for each student who submitted an application within the first two

18In Appendix B.2, we analyze students’ beliefs about their expected earnings upon graduation and analyze their
biases. Table B.2 shows that, on average, students significantly overestimate the average expected earnings upon grad-
uation. This result holds even for programs for which we expect students to be well informed, such as their top true
preference.
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days of the five-day application window. Each website was crafted based on the last rank-ordered

list that students submitted during that period—referred to as their initial rank-ordered list. At the

start of the third day, MINEDUC emailed these students a link to their customized website, where

they could (i) access personalized information based on their characteristics and ROL, designed to

address various information frictions; and (ii) revise their application accordingly, as many times

as they wished before the deadline. By comparing application and admission outcomes before and

after the intervention—and leveraging the random assignment of students to one of four informa-

tion treatments, which varied the content shown on the websites—we assess the impact of different

types of information on students’ application behavior and outcomes. The reminder of this section

is organized as follows. Section 4.1 outlines the experimental design, including the information

provided, treatment conditions, and implementation details. In Section 4.2, we examine the effects

of the intervention on application and admission outcomes, and in Section 4.3, we explore the key

drivers behind these effects. Finally, Section 4.4 discusses the steps and analyses conducted to en-

sure the successful scale-up of the intervention, with the implementation and results discussed in

detail in Section 5.

4.1 Experimental Design

4.1.1 Information Modules.

The information included in the personalized websites was carefully tailored to address the infor-

mation frictions and causes of mistakes outlined in the above sections. Specifically, the intervention

had four main modules:19

M1 - General information. This module served as a baseline, providing basic information and al-

lowing us to isolate the impact of the additional information introduced in other modules. Specifi-

cally, M1 displayed the student’s initial application list and, when clicking on a particular program,

presented detailed information that included the program’s address, the number of years the insti-

tution is accredited for,20 the benefits and types of financial aid the student would be eligible for if

enrolled in the program, the program’s official duration (measured in semesters), and the annual

tuition fee in Chilean pesos (see Figure C.1 in Appendix C).
19Appendix C provides additional details on these modules. The images shown in this section are modified versions

of the actual intervention, adapted to improve clarity and exposition. Screenshots of the actual implementation are
included in the Appendix C, and the full set of screenshots is available upon request.

20Accreditation length serves as a signal of institution quality. Institutions without accreditation are not eligible to
offer public student aid. See details in https://www.cnachile.cl/.
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M2 - Personalized information about scores for programs included in the rank-ordered list. This

module was designed to reduce mistakes on admission probabilities. To that end, it displayed the

admission scores of the first and last students admitted to each program in the student’s initial

rank-ordered list during the 2020 and 2021 admissions processes and visually compared them to

the student’s own application score. Additionally, it flagged programs for which the student did

not meet the admission requirements, providing program-specific alerts (see Figure 3).

Figure 3: M3 - Feedback on Programs’ Cutoffs

M3 - Personalized alerts depending on student’s admission probabilities. Like Module M2, this

module aimed to reduce mistakes on admission probabilities by addressing students’ mispercep-

tions about their chances of admission. However, M3 presented this information in a more salient

and actionable way, introducing alerts at both the program and portfolio levels that flagged poten-

tial issues and provided personalized recommendations to help students improve their application

strategy. Specifically, this module included:

1. Program-level alerts: If the student’s estimated admission probability for a given program

was below 1%, M3 displayed a red alert (see Figure 4) warning about the low likelihood of

admission and encouraging the student to add more programs to their list (see Figure C.3 in

Appendix C).
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2. Portfolio-level alerts: Based on the student’s overall admission probability and their chances

of getting into their top-ranked program, M3 displayed one of three customized messages

(see Figure 5):

(a) If the overall probability of being assigned to any program is below 99%, M3 recom-

mended adding safety programs—i.e., programs for which the student has a positive

admission probability—to help prevent potential overconfidence mistakes.

(b) If the probability of admission to the top-ranked program exceeds 99%, M3 encouraged

students to consider adding reach programs—i.e., programs that they may be interested

in and for which they face a positive admission probability—to help prevent potential

underconfidence mistakes.21

(c) Otherwise, M3 invited students to explore and learn more about additional programs,

encouraging broader consideration beyond their current list. Since these students were

very likely to be assigned to some program on their list (although not necessarily their

top choice), this message aimed to prevent potential underconfidence mistakes.

Figure 4: Feedback on Programs’ Admission Chances

21To identify relevant reach programs, we use 2021 survey data on students’ top true preferences, computing transi-
tion matrices based on typical program pairs.

22



Figure 5: Feedback on Application and Potential Mistakes

M4 - Personalized recommendations of majors of potential interest. This module aimed to miti-

gate mistakes on awareness and valuations by recommending four majors, carefully selected based

on each student’s scores and their submitted rank-ordered list.22 For each recommended major, the

module provided information on average program duration, historical cutoff scores (minimum

and maximum among programs within the major), and labor market outcomes, including average

employment rates and wages four years after graduation (see Figure C.4 in Appendix C).

4.1.2 Treatments.

To evaluate the impact of the different modules, we defined four treatment groups (T1–T4) and

randomly assigned each student who applied before January 12, 2023 at 8 pm CT (i.e., within the

first half of the application time window) to one of these groups in a stratified way,23 with each

treatment involving a different combination of modules in addition to M1.24

22Section C.4 details the recommendation algorithm. MINEDUC did not allow program-specific recommendations
to avoid favoring particular universities.

23Appendix C.2 describes the variables used for stratification and reports the results of several balance checks.
24MINEDUC requested that the general information in M1 not be randomized, as it is publicly available on the

government website https://mifuturo.cl/.
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T1: Only M1 is displayed.

T2: M1 and M2 are displayed.

T3: M1, M2 and M3 are displayed.

T4: M1 and M4 are displayed.

Given the prevalence of mistakes on admission probabilities documented in Section 3, the re-

mainder of this section focuses on comparing applicants who received information designed to

address such mistakes—i.e., information about cutoff scores, estimated admission probabilities,

and personalized alerts about potential mistakes (included in treatments T2 and T3)—to those

who did not receive this type of information.25

4.2 Impact on Application and Admission Outcomes

A total of 107,663 students (approximately 72.36% of applicants) applied during the first half of the

application window, received an email with a link to their personalized website, and ultimately

submitted an application by the end of the application window (i.e., they did not withdraw from

the process). Among these students, 30,709 (approximately 28.52%) opened their personalized

website and thus received the intervention. The analysis in this section focuses on this group,

excluding stratification misfits, which results in a final sample of 29,905 students.26 Descriptive

statistics by treatment group are provided in Table C.1 in Appendix C. As expected (given that ran-

dom treatment assignment), we observe no significant differences in take-up rates or observable

characteristics across groups. Therefore, comparing outcomes among openers assigned to differ-

ent treatments allows us to estimate the effects of the intervention among those who engaged with

the website.

Table 3 presents the results of linear probability models capturing the impact of the information

intervention on students’ application behavior and assignment outcomes. We observe that stu-

dents assigned to treatment groups T2 and T3 were 10% more likely to modify their rank-ordered

list after opening their personalized website (Column (1)). While this did not translate into signifi-

cant improvements on other application and assignment outcomes for students who only received

information regarding the cutoffs of the programs included in their initial rank-ordered list (T2),

students who also received personalized alerts (T3) experienced significant benefits.

25Neither M1 nor M4 provided students with information on these margins, making it unlikely that they affected our
outcomes of interest. In fact, institutional constraints made T4 broadly similar to T1, as MINEDUC did not authorize
program-specific recommendations. Consistent with this, Table C.4 shows no significant differences in application and
assignment outcomes between students assigned to T1 and T4.

26We require students not to withdraw their application to compute the outcomes of interests. The results are similar
when including misfits.
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Table 3: Regression Results among Openers

Applications Assignment

Modified Incr. Prob. Improved Entered Benefited&Persisted
(1) (2) (3) (4) (5)

Treatment 2 0.0133 0.0079 0.0032 0.0031 0.0015
(0.0049) (0.0060) (0.0029) (0.0052) (0.0021)

[0.0495] {0.0180} [0.5149] {0.2670} [0.5248] {0.3370} [0.7426] {0.5500} [0.7426] {0.5330}
Treatment 3 0.0139 0.0173 0.0064 0.0122 0.0071

(0.0050) (0.0063) (0.0030) (0.0056) (0.0022)
[0.0396] {0.0180} [0.0495] {0.0180} [0.1089] {0.0600} [0.0990] {0.0600} [0.0099] {0.0160}

Mean (Control) 0.1348 0.0444 0.0328 0.0279 0.0210
Observations 29,905 7,626 23,371 6,277 29,648
Stratas FE Yes Yes Yes Yes Yes

NOTES. Modified is a binary variable equal to 1 if the student modified her application after the information was sent, 0 otherwise. Incr.
Prob. is a binary variable equal to 1 if the admission probability associated to the initial rank-ordered list submitted is lower than the one
associated to the final rank-ordered list, 0 otherwise. This variable is defined only for students with a positive admission risk given their
initial rank-ordered list. Improved is a dummy variable equal to 1 if the student was assigned to a program ranked above the one where they
would have been assigned given their initial rank-ordered list, 0 otherwise. It is only defined for the sample of students who would have
been matched to a program given their initial rank-ordered list and who did not remove this program from their list. Entered is defined for
students who would not have been assigned to any program given the initial rank-ordered list they submitted. It is a binary variable equal
to 1 if the student is assigned given their rank-ordered list submitted after the information was sent, 0 otherwise. Benefited&Persisted
is a binary variable equal to 1 if the student either entered or improved and persisted for two years in the same program, 0 otherwise.
Robust standard errors are reported in parentheses. We report in brackets the p-values adjusted for multiple hypothesis testing following
the procedure described in Romano and Wolf (2005) and in braces the q-values computed following Anderson (2008a).

Specifically, the intervention induced these students (in T3) to submit a final rank-ordered list

associated with a higher overall admission probability compared to their initial application. To

show this, we focus on students who faced a positive risk of remaining unassigned based on their

initial rank-ordered list and define the outcome Increased Probability to be equal to one if the overall

admission probability of the final list exceeded that of the initial one, and zero otherwise.27 We find

that the share of students who increased their overall admission probability after opening their

personalized website is 39% higher for students assigned to T3, compared to those who received

no information about their admission chances (Column (2)). As we show next, these adjustments

translated into substantial improvements in assignment outcomes.

First, we find that the alerts students received were effective at decreasing the share of under-

matched students. To illustrate this, we restrict attention to students who would have been as-

signed given their initial rank-ordered list and define the outcome Improved to be equal to one if

the student obtained a better assignment (according to their final ROL) compared to their initial

one, and zero otherwise.28 We find that students assigned to T3 were 20% more likely to be as-

27To compute these probabilities, we follow a bootstrapping procedure similar to the one described in Appendix C.3.
28To assess this, we compare the application scores in the programs included in the initial (final) rank-ordered list

against the cutoffs that resulted from the admissions process, assigning each student to their most desired program
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signed to a program they ranked higher than the one where they would have been assigned given

their initial ROL (Column (3)), consistent with a decrease in ex-post under-confidence mistakes.

Second, we find that the intervention was particularly effective at reducing the share of un-

matched students. To assess this, we restrict attention to students who would not have been as-

signed to any program based on their initial rank-ordered list, and define the outcome Entered to

be equal to one if the student was assigned to a program included in their final list, and zero oth-

erwise. We find that students in T3 were 44% more likely to secure an assignment based on their

final ROL compared to those who received no information about their admission risk (Column (4)).

This effect is consistent with a reduction in ex-post over-confidence mistakes, as the alerts prompted

students to adjust their choices in ways that ultimately increased their admission chances.

Finally, we find that the positive effects on admissions also translated to downstream outcomes,

including enrollment and persistence. To capture this, we define the outcome Benefited & Persisted

to be equal to one if the student entered or improved, enrolled and remained in the same program

in the next two years, and zero otherwise. Although the baseline is low—only 2% of the students

in T1 and T4 manage to both gain or improve their admission outcome given their final applica-

tions and remain enrolled after two years—being assigned to T3 increases this probability by 34%.

Overall, these results suggest that alerts at the program and rank-ordered list levels can effectively

induce changes in students’ application behavior, resulting in better outcomes.

4.3 Drivers

Correcting Biases in Beliefs over Admission Chances. Since we elicited students’ beliefs about

their admission chances and their knowledge about program characteristics (as discussed in Sec-

tion 3), we can directly test whether the reduction in application mistakes discussed above re-

sults from correcting students’ biases about the former. In particular, we link students’ survey

responses, which we collected after they submitted their final rank-ordered list, to their appli-

cations and treatment group. We compute the absolute bias in students’ beliefs regarding their

admission chances for their top-true and bottom-true programs, as well as for their overall admis-

sion probability, and regress these beliefs on students’ treatment status, controlling for strata fixed

effects.

Table 4 summarizes these results. On the one hand, we find that being exposed to past cutoff

scores (T2 and T3) is effective at correcting students’ beliefs regarding their bottom-true program,

among those for which they were eligible and their application score was greater than or equal to the cutoff.
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Table 4: Impact on Biases in Admission Probabilities

All Applicants Reach Group Safety Group

Top-True Bottom-True Overall Prob. Top-True Overall Prob.
(1) (2) (3) (4) (5)

Treatment 2 -0.0058 -0.0652 0.0069 -0.0608 -0.0021
(0.0104) (0.0204) (0.0058) (0.0310) (0.0173)

Treatment 3 -0.0058 -0.0471 -0.0087 -0.0604 -0.0386
(0.0101) (0.0195) (0.0056) (0.0337) (0.0169)

Mean (Control) 0.3556 0.3550 0.2181 0.2460 0.4620
Observations 5,321 1,206 9,634 409 1,676
Stratas FE Yes Yes Yes Yes Yes

NOTES. This table reports results from the OLS estimation of linear regression models where the dependent
variable is the absolute value of students’ subjective bias in their admission probabilities for different types of
programs. The sample is limited to students who responded to the survey and opened the intervention. Robust
standard errors reported in parentheses.

with a reduction of 13% to 18% in students’ biases over their admission chances to these programs

(Column (2)). Additionally, we observe that students in the Safety group assigned to T3—who

received targeted alerts about both specific programs and their overall admission risk—present

significantly lower biases in beliefs regarding their overall admission probability (Column (5)).

These patterns align with the intervention’s effectiveness at enhancing admission outcomes among

students at risk of being unassigned, i.e., those making over-confidence mistakes. On the other hand,

we find that cutoff information also helped to correct beliefs among students in the Reach group,

reducing their bias regarding their top-true program by 25% (Column (4)). This suggests that the

intervention lead pessimistic students to correct their beliefs regarding their admission chances to

programs they really like, in line with the reduction in under-confidence mistakes discussed earlier.

Spillover Effects between Channels. By correcting students’ misperceptions about their admis-

sion chances and prompting them to revise their rank-ordered lists, the information provided to

students in T2 and T3 may also encourage them to seek additional information about program

characteristics (beyond admission probabilities). Consequently, these treatments could indirectly

reduce valuation and awareness mistakes. To test this possibility, we examine whether the absolute

bias in students’ elicited beliefs about average earnings differs across treatment groups, focusing

on the top-true, top-reported, bottom-true, bottom-reported, and a randomly selected program.

As shown in Table C.5, we find no evidence supporting this indirect channel.
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4.4 Scale-Up Considerations

Since the first pilot version of the randomized information policy in 2021, a nationwide scale-up

was envisioned as a central goal, conditional on positive results from the intervention. Accord-

ingly, scalability considerations were embedded in the design from the outset. To this end, we

implemented a series of ex-ante steps to facilitate future scale-up and mitigate common threats to

large-scale implementation, as highlighted by Al-Ubaydli et al. (2017). Furthermore, we performed

several analyses to assess the generalizability and robustness of our findings (List, 2020).

4.4.1 Maximizing Experiment Scalability: Ex-Ante Considerations.

To ensure that our experiment would yield not only internally valid estimates but also insights

relevant for large-scale implementation, we took several ex-ante steps to address potential sources

of the “scale-up problem” and enhance external validity. We now describe these in detail.

Representativeness of the Population. One of the main sources of the “scale-up problem” is

that the experimental population may differ from the broader policy population, either in their

treatment effects or in participation costs. Our collaboration with MINEDUC helped mitigate this

concern by allowing us to conduct the experiment directly within the relevant policy population:

college applicants in Chile. Specifically, we randomized all students who submitted their applica-

tions within the first two days of the five-day application window—representing over 72% of the

full applicant pool—into one of the four treatment groups described above. While early applicants

differ from later ones along several observable characteristics (see Table C.3), they constitute the

relevant target group for our intervention since (i) personalized information on admission prob-

abilities can only be provided after students submit an initial rank-ordered list, and (ii) sufficient

time is needed for them to process and act on this information. Moreover, the randomization pro-

cedure did not introduce any differential motivation or incentives across experimental and non-

experimental students. By embedding the experiment within the actual policy population, we thus

address concerns about heterogeneity in treatment effects and participation costs that often limit

the external validity of experimental findings.

Naturalness of the Experimental Task. Another common source of the “scale-up problem” is the

disconnect between experimental conditions and real-world policy environments. For instance,

providing information about the returns to different majors may influence survey responses, yet
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have little effect on actual enrollment decisions due to the low stakes and hypothetical nature of

the task. Our collaboration with MINEDUC allowed us to closely align the experimental setting

with real-world decision-making. We conducted a natural field experiment in a high-stakes envi-

ronment, embedded within the official admissions process and implemented in partnership with

policymakers. Crucially, we did not introduce any artificial margins of choice or hypothetical de-

cisions. As a result, both the choices students faced and the outcomes we measured were identical

to those in the policy setting, enhancing the external validity of our findings.

Cost Considerations. “Boot-on-the-ground” education interventions, such as one-on-one tutor-

ing, are likely to face diseconomies of scale due to increasing logistical costs. In contrast, our in-

tervention was designed to scale at minimal cost, leveraging the cost-effectiveness of information

policies (Kremer et al., 2013; Angrist et al., 2020). The core technological components—assessing

students’ admission risk and generating personalized websites—involved primarily fixed costs,

rendering the marginal cost of reaching an additional student virtually zero. In addition to being

inexpensive, the policy also generates fiscal revenue by increasing enrollment in selective univer-

sities—an outcome associated with substantial earnings gains and long-term tax revenue for the

government (Hastings et al., 2013). While a detailed quantification of the fiscal returns is beyond

the scope of this paper, the combination of low costs and induced tax revenue suggests that the

intervention is likely to pay for itself over a short horizon (Hendren and Sprung-Keyser, 2020).

Quality Considerations. Many small-scale programs experience quality drops once implemented

on a larger scale (Davis et al., 2017; Al-Ubaydli et al., 2017). This challenge is particularly acute

for in-person educational interventions, where the supply of qualified tutors or mentors may not

grow proportionally with demand. In contrast, our intervention was designed to minimize the

risk of quality degradation by leveraging the infrastructure of the centralized admission system.

The platform already collects all the data required to compute students’ admission probabilities,

and the generation and delivery of personalized information can be fully automated once mes-

sage types and the probability thresholds are defined. As a result, the quality and accuracy of the

recommendations can be maintained at scale.29

29Another quality consideration is that mistakes need to be non-negligible and actionable (i.e., that students respond
appropriately to the intervention) for information policies to scale appropriately. This is not a concern in our setting,
since (i) the primary driver of mistakes are biased in admission probabilities that can be corrected (as the results in
Table D.6 show), and (ii) the policy was accompanied with an outreach effort that minimized the risk of inattention.
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Generalizability to Other Settings. We believe our findings have important implications beyond

the Chilean context. First, according to Kapor et al. (2024), at least 46 countries use a centralized

system to organize their admissions to college, including Turkey, Taiwan, Tunisia, Hungary, and

Chile. Among them, the most common assignment mechanism is the Deferred Acceptance al-

gorithm (Neilson (2024)). Second, our theoretical framework captures behavioral mistakes that

are likely to arise in many centralized college admissions systems, formalizing patterns already

documented in other settings (Artemov et al., 2017; Shorrer and Sóvágó, 2021; Chrisander and

Bjerre-Nielsen, 2023). Together, these elements make our study highly relevant for policymakers

seeking to enhance the efficiency and equity of college admission systems worldwide.

4.4.2 Statistical Inference

Another key challenge for scalability is the risk of false positive findings—that is, statistically sig-

nificant estimates that may not replicate at scale. To mitigate this concern, we adopted a conser-

vative inference strategy in our analysis. Specifically, all regressions include fixed effects for the

strata used in the randomization, combined with the standard heteroskedasticity-consistent esti-

mator of the asymptotic variance. As shown by (Bugni et al., 2019), this approach is conservative:

the probability of incorrectly rejecting the null hypothesis is no greater than, and typically strictly

less than, the nominal significance level.

While this conservative approach to inference mitigates concerns about false positives, the risk

remains due to the multiplicity of outcomes and treatment comparisons. To further limit this risk,

we follow List et al. (2019) and adjust for multiple hypothesis testing. Specifically, we report p-

values corrected using the stepwise procedure of Romano and Wolf (2005), which controls the

family-wise error rate, as well as q-values based on the method developed by Anderson (2008b) to

control the false discovery rate.

Finally, we complement our inference strategy by going beyond statistical significance alone.

Following the recommendations of Al-Ubaydli et al. (2017) and Maniadis et al. (2014), we assess

the post-study probability (PSP) of our main findings—that is, the probability that a result is truly

non-zero given that it achieves statistical significance. Table 5 presents PSP estimates for each of

our outcomes of interest: whether students modify their list, increase their admission probabil-

ity, improve their assignment outcome, and persist in their program. We focus on the effect of

Treatment 3, our main treatment of interest, and compute the PSP as follows:
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Table 5: Post-Study Probability

Applications Assignment

Modified Incr. Prob. Improved Entered Benefited&Persisted
Prior (1) (2) (3) (4) (5)
0.10 0.642 0.639 0.562 0.574 0.667
0.20 0.801 0.799 0.743 0.752 0.819
0.30 0.874 0.872 0.832 0.838 0.886
0.40 0.915 0.914 0.885 0.890 0.923
0.50 0.942 0.941 0.920 0.924 0.947
0.60 0.960 0.960 0.945 0.948 0.964
0.70 0.974 0.974 0.964 0.966 0.977
0.80 0.985 0.985 0.979 0.980 0.986
0.90 0.993 0.993 0.990 0.991 0.994

NOTES. This table shows the Post-Study Probability of the experimental results presented in
Table 3. Computations follow Equation (4) for different levels of prior probability of each hy-
pothesis.

PSP =
(1− β)π

(1− β)π + α(1− π)
, (4)

where (1− β) denotes the statistical power of our experiment—the probability of detecting a true

effect—while α is the significance level (set at 0.05), and π is the prior probability that the hypoth-

esis is true. Even under a conservative prior of π = 0.1, which reflects strong initial skepticism, we

obtain PSP values above 0.56 across all key outcomes. This indicates a meaningful update from the

prior belief. Furthermore, the PSP estimates quickly surpass 90% as the prior increases, suggesting

that our findings can reliably be used by policymakers.

4.4.3 Congestion Effects and Scale-Up.

A final scalability concern relates to potential congestion effects. Since program seats are limited,

providing information at scale could significantly change application patterns and alter the market

equilibrium, thus reducing the effectiveness of the intervention. In particular, if many initially un-

matched or undermatched students respond to the information by applying to the same program,

that program may become oversubscribed. As a result, even though students adjust their rank-

ordered lists in response to the information, some may still remain unmatched or undermatched.

We first investigate whether the intervention triggered any displacement effects within the ex-

perimental sample. Although the scope for displacement is inherently limited—only marginally

admitted students in oversubscribed programs are at risk of being displaced—, this is a key con-
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cern since such effects would violate the Stable Unit Treatment Value Assumption (SUTVA).

Leveraging the fact that we observe all application changes, we can identify potential displace-

ment effects. To do so, we simulate a counterfactual assignment by running the assignment algo-

rithm under the assumption that students in treatment groups T2 and T3 did not alter their rank-

ordered lists in response to the information intervention.30 We then compare this counterfactual

assignment to that obtained using students’ final rank-ordered lists. Specifically, we compute the

number of students who receive a worse outcome in the final assignment relative to the counter-

factual, either because they are admitted to a lower-ranked program or lose admission altogether.

We find that such displacement effects on control group students are negligible: fewer than 0.5%

of students in T1 and T4 receive a worse outcome due to changes in the rank-ordered lists of T2

and T3 students.31 We thus conclude that displacement effects do not compromise the integrity of

our experimental results.

Having ruled out within-experiment displacement effects as a driver of the improvements gen-

erated by T2 and T3, we now turn to investigate the underlying sources of these admission gains.

One possibility is that treated students are displacing late applicants who fall outside the experi-

mental sample. Alternatively, the gains may result from students gaining admission to programs

that would otherwise have remained undersubscribed, indicating that the intervention generates

net improvements in vacancy utilization.

Applying the same counterfactual procedure discussed above, we find limited support for the

displacement of late-applicants. Specifically, only 206 students outside the experimental sample

are displaced as a result of the changes in T2 and T3 students’ applications, representing 0.5% of

the non-experimental population. In contrast, we find substantial evidence backing net gains in

vacancy utilization. First, many programs fail to fill all available seats: 55% of the 1,993 programs

on the system still have vacancies at the end of the admission process, and 20% of the 147,056 total

seats remain unassigned. Among the programs to which T2 and T3 students are ultimately admit-

ted, the average number of unfilled seats is 10.8. Second, we observe substantial heterogeneity in

students’ preferences, which reduces the risk of congestion. Students in T2 and T3 who benefited

were assigned to 910 different programs and, among these, the median number of treated students

30Only a small fraction of control students are even at risk of being displaced. Only 7.7% of programs meet the
necessary conditions: (1) the last admitted student is from the control group, and (2) the program is oversubscribed.
Displacement would then require that a treated student gains admission due to the information intervention and that
no higher-priority student vacates a seat in the program.

31This estimate is likely an upper bound, as some students in T2/T3 may have changed their preferences even
without the intervention.
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Table 6: Scale-Up Simulations

Entered Improved
[%] [%]

No Intervention 3.194 3.698
Scale-Up 3.732 4.058

NOTES. This table reports counterfactual assignment results
obtained by averaging over 1,000 bootstrap simulations, where
each student who participated in the assignment is replaced by
a student assigned to T1 for the No Intervention counterfactual
and by a student assigned to T3 for the Scale-Up counterfactual.

gaining admission was one. This dispersion indicates that students respond to the intervention

in diverse ways, avoiding potentially negative congestion effects. Taken together, the combina-

tion of ample seat availability and heterogeneity in student preferences enables the intervention to

generate meaningful improvements in student assignment outcomes.

While our findings suggest that congestion is limited within the experimental setting, it may

become more pronounced as the intervention scales. To assess the potential magnitude of such

congestion effects under broader implementation, we leverage the properties of the centralized

assignment mechanism and our experimental data to simulate a scaled version of the policy using

a bootstrap procedure (Karnani, 2023). Specifically, we simulate two counterfactual assignments:

(i) No Intervention, representing the assignment that would arise without the policy, and (ii) Scale-

Up, representing the assignment that would result if all students applying during the first half of

the application window received the full information treatment (as in T3). Comparing outcomes

across these two counterfactuals allows us to estimate the potential effects of delivering the T3

intervention to all early applicants. To construct each simulated market, we replace every student

who received the intervention with a student randomly drawn from either T1 (for No Intervention)

or T3 (for Scale-Up), while keeping all other applicants unchanged. This approach ensures that the

simulated markets involve the same total number of students, comprising those eligible for the

intervention (bootstrapped from the appropriate group) and those applying in the second half of

the application window. For each counterfactual, we compute the resulting assignments consid-

ering students’ submitted rank-ordered lists both before and after the information treatment and

compare the distribution of assignment outcomes, as detailed in Section 4.2.32

Table 6 presents the results. While we find that the estimated effects of the intervention are

smaller under the Scale-Up scenario than in the experimental setting—indicating that congestion
32This approach relies on a large-market assumption: students are assumed to be “cutoff takers” whose individual

applications do not influence admission thresholds.
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effects are not negligible—we still observe meaningful gains. In particular, students who would

have remained unassigned based on their initial rank-ordered lists are 0.54 percentage points more

likely to be assigned in the Scale-Up counterfactual compared to the No Intervention scenario.

This suggests that, even in the presence of increased competition, the intervention continues to de-

liver improvements in assignment outcomes—especially at the extensive margin—implying that

these gains are not purely redistributive. Moreover, it is important to note that the simulation

procedure—based on sampling with replacement from a limited subset of students—may under-

state the heterogeneity in submitted rank-ordered lists, potentially overstating congestion effects.

These results therefore indicate that while some crowding may occur, a broader rollout of the pol-

icy is likely to improve students’ outcomes.

5 Scaled-Up Information Intervention

5.1 Policy Implementation and Empirical Evaluation Strategy

Given the positive results discussed above, MINEDUC decided to implement the information in-

tervention nationwide in 2023, adapting its design to accommodate important changes in the appli-

cation process. While the core structure of the intervention remained consistent with the random-

ized experiment—students received personalized websites created based on their rank-ordered

lists submitted within the first half of the application period—the national roll-out included all in-

formational modules and was delivered to the entire target group without randomization. Further-

more, due to the higher uncertainty and potential impact, MINEDUC promoted the intervention

through social media and sent multiple reminder emails to students, resulting in higher take-up

compared to the experimental intervention.

As detailed in Appendix D.1, the 2023 admissions process was among the most challenging and

uncertain since the inception of the centralized system. Not only was an additional entrance exam

added, but more significantly, the scoring scale for all admissions factors was overhauled—shifting

from a [210, 850] range to a [100, 1000] scale. This change rendered previous years’ cutoffs unin-

formative, leaving students without reliable benchmarks to assess their chances of admission. To

address this uncertainty, the most relevant change we implemented in 2023 was replacing previous

years’ cutoffs with the actual score of the last student admitted to each program based on early ap-

plications. Figure 6 provides an example of the personalized information students received, with

additional illustrations available in Appendix D.1.
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Figure 6: General

Motivated by the limitations of the recommendation module discussed in Section 4—which

provided major- rather than program-specific recommendations—, we updated Module M4 to

include a search engine that allowed students to find programs based on various filters (e.g., lo-

cation, major, university). For each program, this search engine displayed the current admission

cutoff given the received applications, aiming to reduce mistakes on admission probabilities. In addi-

tion, it provided key additional information such as tuition fees, program duration, and available

benefits, with the goal of mitigating mistakes on valuations and mistakes on awareness (see Figure 7).

When implemented at scale, this updated design closely resembles a one-shot version of the it-

erative Deferred Acceptance algorithm, allowing students to access “real-time” cutoff information

and adjust their applications accordingly.

To evaluate the impact of the policy in the absence of an untreated group, we use an encour-

agement design. Specifically, we randomly selected a group of students to receive a WhatsApp

message encouraging them to access their personalized website. We then use the random assign-

ment of the message as an instrument to identify the causal effect of opening the personalized

website. This approach allows us to estimate the Local Average Treatment Effect (LATE)—that

is, the average effect for students who are induced to open their personalized website as a result

of receiving the Whatsapp message. In Appendix D.2, we provide details of the encouragement
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Figure 7: Search module

design and a series of checks that confirm the validity of our instrument (see Tables D.1 and D.2).

5.2 Results

Table 7 presents the second-stage results of our two-stage least squares estimation strategy, using

the same outcome measures as in Table 3. Since we only observe enrollment data for 2023, we

replace the outcome Benefited & Persisted with Benefited & Enrolled, defined as an indicator equal to

one if the student benefited—i.e., entered or improved—and ultimately enrolled.33

First, consistent with the results reported in the previous section, we find that the information

intervention prompts students to revise their applications. Specifically, opening the personalized

website increases the probability of updating their rank-ordered list by 11.77 percentage points

among compliers, relative to a baseline update of 23% among students who did not receive the

WhatsApp reminder (Column (1)). These changes translate into significant improvements in stu-

dents’ applications. Among students who faced a positive risk of being unassigned based on their

initial rank-ordered list, accessing the personalized website increases the likelihood of submitting

a final rank-ordered list with a higher probability of admission by 5.2 percentage points (Column

33In Table D.3 in Appendix D.3, we report summary statistics for several outcomes of interest, separating by whether
the student open the email and their risk group.
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Table 7: Regression Results: Instrumental Variables

Applications Assignment

Modified Incr. Improved Entered Benefited
Prob. & Enrolled

(1) (2) (3) (4) (5)
Open 0.1177 0.0523 0.0364 0.0347 0.0308

(0.0148) (0.0152) (0.0110) (0.0149) (0.0077)
[0.0099] {0.0010} [0.0099] {0.0010} [0.0198] {0.0020} [0.0297] {0.0200} [0.0099] {0.0010}

Mean (No Text) 0.2322 0.0764 0.0680 0.0602 0.0486
Observations 132,893 41,659 95,739 35,317 131,056
Risk Group Yes Yes Yes Yes Yes

NOTES. Modified is a binary variable equal to 1 if the student modified her application after the information was sent, 0 otherwise.
Incr. Prob. is a binary variable equal to 1 if the admission probability associated to the initial rank-ordered list submitted is lower
than the one associated to the final rank-ordered list, 0 otherwise. This variable is defined only for students with a positive admission
risk given their initial rank-ordered list. Improved is a dummy variable equal to 1 if the student was assigned to a program ranked
above the one where they would have been assigned given their initial rank-ordered list, 0 otherwise. It is only defined for the sample
of students who would have been matched to a program given their initial rank-ordered list and who did not remove this program
from their list. Entered is defined for students who would not have been assigned to any program given the initial rank-ordered list
they submitted. Entered is a binary variable equal to 1 if the student is assigned given their rank-ordered list submitted after the
information was sent, 0 otherwise. Benefited&Enrolled is a binary variable equal to 1 if the student either entered or improved and
enrolled, 0 otherwise. Robust standard errors are reported in parentheses. We report in brackets the p-values adjusted for multiple
hypothesis testing following the procedure described in Romano and Wolf (2005) and in braces the q-values computed following
Anderson (2008a).

(2)). This represents a 68% increase compared to students who did not receive the reminder.

In line with our experimental findings, we also find that the personalized information improves

students’ assignment outcomes for both students who would have been assigned and those at risk

of being unassigned based on their initial rank-ordered list. Among the former, students who ac-

cessed their personalized website due to the WhatsApp reminder are 3.64 percentage points more

likely to improve, i.e., to be admitted to a program ranked higher than the one they would have

otherwise been assigned to—a 54% increase relative to those who did not receive the reminder.34

For students who would not have been admitted to any program based on their initial list, the

intervention leads to a 3.47 percentage points increase in the probability to be admitted to a pro-

gram at the end of the assignment procedure, compared to a 6% baseline for those not receiving

the reminder (Column (4)). These gains in assignment outcomes also translate to improvements in

enrollment, as shown in Column (5).

To gain some insights on the mechanisms behind these improvements, we analyze students’

use of the search engine embedded in their personalized websites. Table D.5 shows that among

students who opened their website, there is a large and significant correlation between the use

34Table D.4 shows that this effect is concentrated among applicants with a very low risk of non-admission given their
initial rank-ordered list.
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of the search engine and all of the outcomes analyzed in Table 7. These results remain true even

after controlling for the number of programs included in the list, suggesting that the search engine

affected outcomes through channels other than simply expanding the length of rank-ordered lists.

In addition to these behavioral responses, we also find that the intervention helped reduce biases

in students’ beliefs about program cutoffs and their own admission probabilities (Table D.6).

Overall, these results suggest that the scaled-up information intervention was highly effective

in improving students’ application and assignment-related outcomes. The estimated effects are

not only consistent with the experimental results for T3 but notably larger in magnitude. This am-

plification may reflect the nature of the compliers in the encouragement design—students particu-

larly responsive to the intervention—as well as the heightened uncertainty in the 2023 admissions

process, which increased students’ reliance on timely, personalized information. Importantly, the

nationwide roll-out also expanded the scope of the intervention by allowing students to explore

real-time cutoffs for all programs in the system—not just those already on their initial rank-ordered

list. This broader access likely enhanced students’ ability to assess their chances more accurately,

discover additional relevant options, and ultimately make more informed application decisions.

5.3 Discussion

Learning from the Scale-Up and the Last-Mile Problems. Over our five-year journey, we gath-

ered valuable insights at every stage, which informed the design and implementation of each sub-

sequent step. Theory helped us identify the mechanisms linking information frictions to appli-

cation mistakes, offering a framework to measure these distortions and design targeted interven-

tions. Surveys and administrative data confirmed the presence of frictions along multiple dimen-

sions and allowed us to assess both the prevalence and the impact of application mistakes. The

field experiment demonstrated that light-touch personalized interventions can meaningfully re-

duce these mistakes. Finally, the policy implementation gave us a unique opportunity to evaluate

the intervention at scale—under real-world constraints and amidst considerable uncertainty.

While we view the overall process as a success, particularly given the significant improve-

ments observed in student outcomes, the scale-up also faced several last-mile challenges that offer

important lessons for policymakers and market designers. Although the policy was carefully co-

designed with MINEDUC, other key stakeholders were not directly involved and, in some cases,

opposed the intervention—especially given the concurrent changes to the admissions process. As

a result, MINEDUC had to make a number of concessions to ensure the intervention could move
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forward. One key compromise was the inability to provide students with forecasted ranges for cut-

off scores—an important feature we had initially envisioned. The lack of full coordination among

stakeholders also created unnecessary confusion. For example, universities, which were not in-

formed about how the displayed cutoff scores were calculated, still had to respond to inquiries

from applicants seeking advice about their admission chances.35

Overall, we believe that the lack of alignment among key stakeholders—particularly during

the design phase—led to a suboptimal version of the policy and introduced avoidable challenges

during the implementation. For practitioners, policymakers, and market designers looking to

scale similar interventions, our experience underscores the importance of engaging all relevant

stakeholders early in the process to ensure their support and alignment. Early coordination not

only contributes to a more coherent policy design but also facilitates smoother implementation.

Stronger institutional collaboration could have enhanced both the clarity and the effectiveness of

the intervention, suggesting that future iterations would benefit from a more integrated and par-

ticipatory approach.

Implications for Market Design. Our results indicate that information frictions significantly al-

ter the performance of centralized admission systems, even when students have no clear strategic

incentive to misreport their preferences. These results have two key implications for the design of

matching markets. First, the presence of application mistakes suggests that strategy-proof mecha-

nisms are not immune to inefficiencies caused by information frictions, highlighting the need for

more robust mechanisms. This is particularly relevant as the adoption of centralized assignment

systems based on strategy-proof mechanisms is expanding globally, with many countries using

them for student allocations. As highlighted by Rees-Jones and Shorrer (2023), sequential assign-

ment procedures—such as dynamic implementations of the Deferred Acceptance algorithm (Bó

and Hakimov, 2022)—can improve outcomes in contexts where students face incomplete prefer-

ences (Grenet et al., 2022), behavioral biases (Meisner and von Wangenheim, 2021; Dreyfuss et al.,

2022), off-platform options (De Groote et al., 2025), or costly information acquisition (Immorlica

et al., 2020). The results of our scaled-up intervention, resembling a one-shot version of the itera-

tive Deferred Acceptance algorithm, support the use of such sequential mechanisms at scale.

Second, our results highlight the potential of information policies to improve the performance

of centralized admissions systems. In cases where policymakers prefer to retain static mechanisms

35We believe MINEDUC efficiently addressed these concerns, alleviating a significant part of the implementation
issues.
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like standard DA over sequential or iterative implementations, our results show that light-touch

information interventions can serve as an effective and scalable complement. The personalized

websites we implemented in Chile—–providing real-time and personalized information on ad-

mission chances—offer a replicable model that can be adapted to other settings. As such, they

represent a practical tool for supporting students in the application process and mitigating the

effects of information frictions.

6 Conclusion

In this paper, we present the results of a multi-year collaboration with policymakers in Chile aimed

at evaluating whether information interventions can effectively reduce application mistakes and

improve student outcomes. We introduce a new taxonomy that characterizes different types of

application mistakes arising from information frictions across several dimensions, including ad-

mission probabilities, program characteristics, unawareness of available options, and misunder-

standing of the admission mechanism. Nationwide surveys allow us to quantify the prevalence of

these application mistakes and the underlying mechanisms, with biases in students’ beliefs about

their admission chances being the primary driver of these mistakes.

Based on the surveys’ insights, we collaborated with policymakers to design and implement a

multi-year outreach policy to reduce information frictions and application mistakes. Using a field

experiment where we vary the information provided to students, we find that showing personal-

ized information about admission probabilities for listed programs and customized messages to

guide students depending on their overall admission probability has a causal effect on improving

students’ outcomes, significantly reducing the risk of being unmatched to the centralized system

and the incidence of both over-confidence and under-confidence mistakes. We provide a thorough

discussion of how scalability was embedded in the intervention’s design from the beginning and

implement additional analyses to assess the generalizability and robustness of our main findings.

Given the success of the field experiment, we continued collaborating with MINEDUC to im-

prove the design of the intervention and implement it at scale. By exploiting an encouragement

design, we find that showing personalized application advice, information about programs’ char-

acteristics, and current cutoff scores for all programs in the centralized system—similar to sequen-

tial implementations of DA—significantly improved students’ outcomes.

Overall, our work demonstrates that information frictions and application mistakes are preva-

40



lent, even in a high-stakes environment like college admissions. However, personalized informa-

tion policies implemented at scale can effectively alleviate these frictions. We believe our work

provides a model for how researchers and policymakers can collaborate closely to design, test, re-

fine, and implement at scale education policies to improve students’ outcomes. As the availability

of education data grows, major opportunities exist for policies addressing information frictions to

enhance efficiency and equity. We hope our work inspires future efforts in this direction.
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Appendices

A Survey Details

A.1 Survey Design

As exposed in Section 2, we designed and conducted several nationwide surveys between 2020 and

2023 in collaboration with MINEDUC and DEMRE. These surveys included three main modules:

(i) preferences, (ii) beliefs, and (iii) understanding of the admission process.36 In this section, we

describe each of these modules and the information they provide to characterize the different types

of mistakes.

(i) Preferences module. This module aimed to elicit students’ true preferences. Towards this end,

we asked students about their true top preference, i.e., the program they prefer the most

among all the programs in the system, regardless of their admission chances. In addition,

we asked students about their true bottom preference, i.e., any program they did not list

in their ROL and that they would prefer compared to being unassigned, regardless of their

admission chances. These questions allow us to know whether students misreport their true

top and bottom preferences, excluding them from their ROL.

(ii) Beliefs module. This module aimed to elicit students’ beliefs about several relevant factors

affecting their application, including admission probabilities, expected earnings, chances of

retention and graduation, expected cutoffs, etc. We elicited this information for programs

included in the students’ preference list and others outside their ROL, including their true top

and bottom preference and some random programs. These questions allow us to understand

the role of biased beliefs on application mistakes.

(iii) Knowledge of the mechanism. This module aimed to measure students’ knowledge and un-

derstanding of the system’s rules, the requirements of the programs they applied to, their

awareness of potential mistakes, and also to learn the reasons behind some of their decisions

such as excluding their true top or true bottom programs. These questions allow us to further

understand the drivers of application mistakes.

36In Appendix A.3, we report summary statistics for all surveys.
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A.2 Surveys questions

In this subsection, we describe the main questions used in the analysis.37

• Current cutoff: We show you now a list of the programs you applied to, in strict order of preference. For each of

them, please tell us which do you think will be the value of the cutoff score for the CURRENT Admission Process

and how likely do you think your application score will be above the cutoff score. We remind you that this is

only a survey, and it DOES NOT affect in any way your application nor your admission probabilities. What

do you think will be the value of the cutoff score for the current Admission Process for each of these programs?

• Admission probability to a program: How likely do you think your application score for the following

programs will be above the current admission process’s cutoff score?

On a scale from 0 to 100, where 0 is “completely sure that your application score WILL NOT be above the cutoff

score for this program" and 100 is “completely sure that your application score WILL BE above the cutoff score

for this program".

• Admission probability: Regardless of the admission track. How likely you think that you will be admitted in

some preference of your application?

On a scale of 0 to 100, where 0 is “completely sure that you WILL NOT be admitted in any of your preferences"

and 100 is “completely sure that WILL BE admitted in one of your preferences".

• Knowledge about previous cutoffs: It is referred to a cutoff score as the application score of the last admitted

students to a given program. Each student is assigned to the highest reported preference for which her appli-

cation score is greater than or equal to the cutoff score that realizes in the current Admission Process. Do you

know which was the cutoff score for the PREVIOUS YEAR for each of the programs you applied to?

• Knowledge about requirements: Do you know the requirements and vacancies for each program in the

following list?

– Restricts preference order?

– Requires Science test?

– Number of vacancies?

– Minimum weighted score?

– Minimum math-verbal average?

– Requires HYCS test?

37The complete set of instruments is available upon request.
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• Knows someone in the program: Among the programs you applied to, do you know someone close to you

who is currently studying there (friends, relatives, etc.)?

• True-top: This question aims to know where you would have applied to in the hypothetical case in which your

admission did not depend on your scores. We remind you that this is only a hypothetical question and will

not affect your application or admission probabilities. If the Admissions Process did not depend on your PSU

scores, nor your NEM or Ranking scores. To which program would you have applied?

• True-bottom: Imagine a HYPOTHETICAL scenario in which you were NOT admitted to any program in

your application list. Is there any program in the centralized system that you have NOT included in your

application but you would prefer than being unassigned?

• Knowledge about income and employment: Regarding the graduation process of higher education and

considering your knowledge about characteristics like the average income of the graduates and employment

rates, how informed do you think you are about the following programs?

– I don’t think I am informed

– Slightly informed

– Moderately informed

– Quite informed

– Completely informed

• Average income: The objective of this question is to know about your expectations of FUTURE INCOME

in some of the programs that you applied to and in some that you did not. What do you think is the average

monthly income of graduates at the fourth year of graduation from the following programs? In a scale of $0 to

$3.000.000
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A.3 Survey Summary Statistics

Table A.1: Summary Statistics Applicants and Survey

Demographics and Scores High-School Type

Year Group N Female Low-Income Avg. Math-Verbal Public Voucher Private

2020
Applied 146465

0.572 0.621 507.439 0.281 0.537 0.179
(0.495) (0.485) (171.069) (0.449) (0.499) (0.384)

Surveyed 38093
0.613 0.625 530.32 0.281 0.543 0.172

(0.487) (0.484) (154.798) (0.45) (0.498) (0.377)

2022
Applied 148819

0.577 0.491 543.032 0.288 0.549 0.161
(0.494) (0.5) (88.567) (0.453) (0.498) (0.367)

Surveyed 31791
0.64 0.498 549.103 0.289 0.562 0.145

(0.48) (0.5) (92.367) (0.453) (0.496) (0.353)

2023
Applied 187225

0.58 0.487 624.698 0.302 0.554 0.143
(0.494) (0.5) (117.734) (0.459) (0.497) (0.35)

Surveyed 49230
0.637 0.553 588.923 0.362 0.552 0.083

(0.481) (0.497) (144.089) (0.481) (0.497) (0.276)

Note: Summary statistics for the 2020, 2022 and 2023 applicants and surveyed students. Applicants data considers all
students who applied to at least one program in their corresponding year. Survey data considers all students who
completed their corresponding survey. For 2023, we consider students who completed both base and endline surveys.
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B Evidence of Application Mistakes: Additional Results

B.1 Understanding Biases in Under-Confidence and Ordering Mistakes

In Table B.1, we report the results of linear regressions examining the absolute value of the bias

related to admission probabilities and expected cutoff scores,38 focusing on students’ knowledge

and various socioeconomic and demographic factors. We observe that greater bias in admission

probabilities is positively correlated with increased biases in cutoff scores (Bias Norm Cutoff ) and

negatively correlated with students’ awareness of admission requirements (Requirements Knowledge

Share) and their connections within the program (Knows someone in the program). Furthermore, this

analysis reveals that students from more affluent backgrounds, with higher application scores,

and those attending private schools exhibit lower bias in admission probabilities and cutoff scores.

These results suggest a disparity in information accessibility, implying that students from less

advantaged socioeconomic backgrounds may possess less accurate beliefs about their admission

probabilities, potentially leading to application mistakes.

Overall, these results suggest that having information about previous year cutoff scores could

help students to reduce their biases over admission probabilities and, thus, reduce the prevalence

of mistakes on assignment probabilities. However, since students might anchor their beliefs to the

previous year’s information and misunderstand the meaning of cutoff scores, it is essential also to

provide information about the current admission process and educate them on the mechanism’s

rules.

B.2 Mistakes on Valuations and Awareness

To quantify the magnitude of this lack of knowledge and understand how it correlates with stu-

dents’ characteristics, in Table B.2, we report the results of linear regressions on the absolute per-

centage of bias on the average income,39 controlling by application scores, gender, income, and

type of high school. We only consider students who did not open the intervention to avoid poten-

38As part of our survey, we also elicit students beliefs on the cutoffs of some relevant programs, including their true
top preference, their top reported one, among others. Moreover, we ask students whether they know the previous year’s
cutoff. Indeed, we find that only 58% declare to know the previous year’s cutoffs for all their listed programs, and 9%
declare to ignore all of them. Although DEMRE does not provide any information about programs’ cutoffs during the
application process, this information can be typically found on universities’ websites. One reason behind the lack of
centralized information about cutoff scores is the concern that some students might not understand what a cutoff score
exactly means. For instance, they might believe that programs predetermine cutoffs and may not understand that these
vary from year to year.

39This metric is computed as the absolute value of the difference between students’ beliefs and the actual value of
the average income, divided by the latter.
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Table B.1: OLS regression for Bias Norms over Adm. Probabilities and Cutoffs

Abs. Bias Adm. Prob Abs. Bias Cutoff

(1) (2) (3) (4)

Avg. Math-Verbal Normalized −0.022∗∗∗ −0.016∗∗∗ −2.329∗∗∗ −1.788∗∗∗

(0.001) (0.001) (0.084) (0.083)
Female 0.024∗∗∗ 0.028∗∗∗ −0.221 0.581∗∗∗

(0.001) (0.001) (0.226) (0.220)
Below median income 0.026∗∗∗ 0.022∗∗∗ 1.887∗∗∗ 1.097∗∗∗

(0.002) (0.002) (0.251) (0.245)
Public 0.058∗∗∗ 0.042∗∗∗ 9.351∗∗∗ 6.893∗∗∗

(0.003) (0.002) (0.380) (0.372)
Voucher 0.052∗∗∗ 0.036∗∗∗ 9.279∗∗∗ 7.134∗∗∗

(0.002) (0.002) (0.318) (0.312)
Requirements Knowledge Share −0.023∗∗∗ −4.962∗∗∗

(0.002) (0.337)
Knows cutoff for every program −0.095∗∗∗ −21.209∗∗∗

(0.003) (0.427)
Knows cutoff for some programs −0.059∗∗∗ −13.143∗∗∗

(0.003) (0.435)
Knows someone in the program −0.008∗∗∗ −4.435∗∗∗

(0.002) (0.277)
Absolute bias cutoff 0.001∗∗∗

(0.000)

Mean 0.297 0.297 41.984 41.984
Observations 148,539 148,539 148,539 148,539

Note: Each observation represents a student-program pair where the student is not PACE and completed the 2020 survey,
the program has a cutoff, and the student either (i) included the program in their preference list or (ii) reported it as
their top-true preference. Requirement Knowledge Share is the fraction of requirements the student claims to know for
the applied program. Knows the cutoffs for every (some) program is a dummy variable indicating whether the student
knows the cutoffs for all (some) programs. Knows someone in the program is a dummy for knowing someone in the
program. Abs. Bias Adm. Prob. (Abs. Bias Cutoff) is the absolute value of the bias (cutoff) for the program’s admission
probability. Models (2) and (4) also controls for the position of the program in the student’s preference list. Significance
reported: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01
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tial effects driven by the intervention we discuss in Section 4.

Table B.2: Regression Results for Absolute Bias on Average Income

Percentage of Absolute Bias in Average Income

Top Reported Top True Bottom Reported Bottom True Random
(1) (2) (3) (4) (5)

Avg. Math-Verbal normalized −22.036∗∗∗ −20.669∗∗∗ −20.892∗∗∗ −21.811∗∗∗ −21.246∗∗∗

(0.928) (1.314) (1.003) (1.893) (0.965)
Female 7.232∗∗∗ 4.328∗∗ 6.400∗∗∗ 8.600∗∗∗ 6.884∗∗∗

(1.551) (2.116) (1.672) (3.330) (1.624)
Family income below median −2.970∗ −2.996 −3.237∗ −2.747 −4.592∗∗∗

(1.564) (2.073) (1.687) (3.377) (1.638)
Public −9.218∗∗∗ −6.760∗ −8.839∗∗∗ −13.978∗∗ −6.996∗∗

(2.628) (3.560) (2.814) (5.646) (2.745)
Voucher −7.392∗∗∗ −6.554∗∗ −5.147∗∗ −12.071∗∗ −6.661∗∗∗

(2.352) (3.211) (2.509) (5.191) (2.467)

Mean 50.397 49.595 53.163 55.745 54.293
Observations 6,855 3,366 6,146 1,607 6,470
Note: Sample includes all students who completed the survey and did not receive the intervention. Significance

reported: ∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01.

First, we observe that the constant is large and significant for all the models considered, sug-

gesting that students have incorrect beliefs about their expected income upon graduation. Second,

we observe that biases are negatively correlated with application scores, meaning that students

with lower scores have less accurate beliefs. Third, we observe that the variable Female is positive

and significant, i.e., women are more biased about average expected earnings than men. Over-

all, these results suggest that students have large biases in their assessment of the average future

earnings, potentially leading them to mistakes on valuations.

B.3 Mistakes by Truth-tellers

As discussed in Section 2.3, a truth-teller is a student who includes all programs they prefer over

being unassigned in their ranked-ordered list, unless they prefer more programs than the max-

imum allowed (i.e., full-list students). In such cases, Equation 3 implies that the student will

truncate their list by excluding the least-preferred options. However, if the student includes any

program for which they have zero admission probability, excluding any program that the student

may prefer over being unassigned and for which they may have positive admission probability

would lead to a strict increase in the student’s utility, resulting in a mistake on truth-telling.40

40By definition, a short-list truth-teller cannot make a mistake by truth-telling, since such mistakes require excluding
programs preferred over being unassigned, contradicting the premise of truthful reporting.
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When the constraint in the length of their list is binding, students may exclude many programs

they prefer over being unassigned. As discussed in Section 3.1, our survey allows us to identify one

such program: the bottom-true preference. Then, a full-list truth-teller—i.e., a student for whom

the constraint is binding and that included their top-true preference in their list—makes an over-

confidence mistake if (i) they have a positive admission chance for their bottom-true program; (ii)

they include at least one program in their list with zero admission probability; and (iii) they face a

positive overall risk of being unassigned. Together, these conditions imply that adding the bottom-

true program to their list would have strictly increased the student’s expected utility, implying a

mistake by truth-telling,

Table B.3 presents summary statistics on full-list truth-tellers from the 2022 survey. Specifically,

it reports the total number of full-list truth-tellers among survey respondents (under Total) and,

among these, the number and fraction of students who include at least one program with zero

admission probability and who exclude their bottom-true preference (under Any zero and Exclude

Bottom-True, respectively). Then, we compute the number and fraction of students who make an

ex-ante (ex-post) mistake by truth-telling, i.e., students who have at least one program with zero

chance, who excluded their bottom-true preference, and that had a positive admission probability

(application score above the cutoff) for the latter.

Table B.3: Mistakes on Truth-Telling

Full-List Truth-Tellers Mistake by Truth-Telling

Total Any zero Exclude Bottom-True Ex-Ante Ex-Post

N N % N % N % N %

887 796 89.741 271 30.552 10 1.127 6 0.676

Note: Sample includes students who completed the survey of 2022, who are not PACE and applied to ten programs
including their top true preference (i.e., full-list truth-tellers), and were not part of treatments T2 and T3. The columns
under Any zero report the number and fraction of full-list truth-tellers that included at least one program for which they
had zero admission chance in their final ROL. The columns under Exclude Bottom-True report the number and fraction
of full-list truth-tellers that excluded their bottom-true program.

Among the 7,311 survey respondents (see Table 1), 12.13% (N = 887) are classified as full-list

truth-tellers. Of these students, 89.74% include at least one program with zero admission probabil-

ity in their final ROL, while 30.55% exclude their bottom-true program. Finally, we observe that the

number of the full-list truth-tellers that meet the latter two conditions and make a mistake ranges

from 6 to 10, which represents between 0.676% and 1.127% of this group. Hence, we conclude that

the prevalence of mistakes by truth-tellers is relatively low but not negligible.
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C Randomized Information Intervention: Details and Additional Re-

sults

C.1 Intervention Design

Figure C.1: Module 1 - Information on Programs’ Characteristics Included in Application
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Figure C.2: Detailed zoom
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Figure C.3: Feedback on Programs’ Admission Chances: red warning
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Figure C.4: Major Recommendations
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C.2 Treatment Assignment and Stratification

As discussed in Section 4, we assign students to treatments in a stratified way to achieve balance.

For the stratification we consider the following characteristics:

• Female: dummy variable equal to 1 if the student is female, and 0 otherwise.

• Region: categorical variable that takes four 3 levels depending on the region where the stu-

dent graduated from high-school. Specifically, this variable is equal to 1 for students grad-

uating in the north (regions I, II, III, IV and XVII); 2 for students graduating in the center

(regions V, XIII, VI, VII); and 3 for students graduating in the south (regions VIII, IX, X, XI,

XII, XIV and XVI).

• Score: categorical variable that takes 4 values depending on the average score between the

tests in Math and Verbal. Specifically, this variable is equal to 1 for students with average

score below 450; 2 for students which average score between 450 and 600; and 3 for students

with score above 600.

• Overall alert: there are three types of overall alerts: (i) reach, (ii) safety, and (iii) more in-

formation. Each student can be assigned to one of these groups, and thus we also use this

assignment as part of the stratification.

In Table C.1, we report the mean of different variables and p-values from tests of differences in

means between Treatment 1 and each of the other treatment arm. We observe that we fail to reject

equality across all these tests, which confirms that covariates are balanced across treatment arms.
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Table C.1: Balance Tests

Mean P-Value Difference

Treatment 1 Treatment 2 Treatment 3 Treatment 4 T2-T1 T3-T1 T4-T1
(1) (2) (3) (4) (5) (6) (7)

Open 0.282 0.282 0.281 0.284 0.985 0.882 0.601
Female 0.598 0.597 0.598 0.597 0.802 0.892 0.778
Low-Income 0.414 0.418 0.420 0.416 0.311 0.186 0.591
Metropolitan Region 0.367 0.367 0.369 0.372 0.919 0.588 0.220
Public High school 0.292 0.293 0.294 0.293 0.725 0.629 0.818
Voucher High school 0.561 0.560 0.561 0.557 0.791 0.895 0.337
GPA 6.046 6.045 6.041 6.046 0.819 0.289 0.972
Math-Verbal 0.337 0.338 0.337 0.340 0.902 0.960 0.623
Assigned Interim 0.779 0.777 0.778 0.777 0.634 0.698 0.483
Overall Ratex Interim 0.770 0.768 0.769 0.768 0.574 0.854 0.632
Observations 26,404 26,546 26,512 26,467

NOTES. This table reports results from covariates balance checks across treatment arms. Columns (1)–(4) report the mean of the
variable for treatment group 1-4, respectively. Columns 5–7 display p-values from tests of differences in means between Treatment 1
and each of the other treatment groups (Treatment 2, Treatment 3, and Treatment 4).
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Table C.2: Balance Tests - Open

Demographics High-School Type Scores

Female Low-Income Metrop. Region Public Voucher GPA Math-Verbal
(1) (2) (3) (4) (5) (6) (7)

Open 0.069 0.006 0.032 -0.002 -0.002 0.056 0.103
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.006)

Constant 0.578 0.415 0.360 0.293 0.560 6.029 0.309
(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.003)

Observations 105,917 105,929 105,917 105,917 105,230 105,800 105,917

NOTES. This table compares the characteristics of applicants who opened their personalized website against those who did not.
Each column reports results from the OLS estimation of a linear regression model, considering different students’ characteristics as
the outcome variable. Robust standard errors are reported in parentheses.
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Table C.3: Balance Tests - Early & Late Applicants

Demographics High-School Type Scores

Female Low-Income Metrop. Region Public Voucher GPA Math-Verbal
(1) (2) (3) (4) (5) (6) (7)

RCT Participant 0.071 0.026 -0.067 0.019 0.037 -0.033 -0.199
(0.003) (0.003) (0.003) (0.003) (0.003) (0.004) (0.005)

Constant 0.525 0.391 0.433 0.275 0.522 6.058 0.536
(0.002) (0.002) (0.002) (0.002) (0.002) (0.003) (0.004)

Observations 148,769 148,782 148,769 148,769 147,508 148,769 148,769

NOTES. This table compares the characteristics of early applicants, selected to participate in the RCT, and late applicants, who were
not participating in the experiment. Each column reports results from the OLS estimation of a linear regression model, considering
different students’ characteristics as the outcome variable. Robust standard errors are reported in parentheses.
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C.3 Admission Probabilities

To compute the admission probabilities, we use a bootstrap procedure similar to that in Agarwal

and Somaini (2018) and Larroucau and Ríos (2018). The main difference is that these approaches

use complete information regarding the applications. In our case, we only have the application

list of close to 2/3 of the students that ended up applying, so running the bootstrap procedure

on this sample would considerably underestimate the cutoffs. For this reason, our first task is to

estimate the total number of students that would apply in 2022 based on the applications received

so far. To accomplish this, we divide the population into three segments based on their average

score between Math and Verbal (the two mandatory exams of the PSU/PDT). Then, using data

from 2020 and 2021, we estimate which fraction of all students that take the national exam would

apply to at least one program in the centralized system taking the average between these two

years. Finally, comparing this number with the actual fraction of students in each score bin that

have applied so far, we quantify the number of students that have not applied yet.

Based on the number of applicants missing, we perform 1,000 bootstrap simulations, each con-

sisting of the following steps:

1. Sample with replacement the number of students missing in each bin score, and incorporate

the sampled students to the pool of applications received so far.

2. Run the assignment mechanism used in the Chilean system. See Rios et al. (2021) for a de-

tailed description of the mechanism used in Chile to solve the college admissions problem.

3. Compute the cutoff of each program for both the regular and BEA admission processes.

As a result of this procedure, we obtain two matrices (for the regular and BEA processes) with 1,000

cutoffs for each program. Hence, the next step is to estimate the distribution of the cutoff of each

program in each admission track. To accomplish this, we estimate the parameters of a truncated

normal distribution for each program and admission track via maximum likelihood. Then, using

the estimated distributions, we evaluate the CDF on the application score of the student to obtain

an estimate of the admission probability, taking into account whether the student participates only

in the regular process or also in the BEA track.

C.4 Recommendations

The recommendation algorithms works as follows:
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1. Find the most and the second most popular majors based on the preferences included in the

student’s ROL.

2. For each pair of majors, and considering the most and the second most preferred major of

each student, compute a transition matrix that returns the probability that a given major is

followed by another major as the most preferred ones.

3. For each student, compute the set of feasible majors considering the student’s scores and her

admission probabilities (obtained as described in the previous section).

4. For students with high scores (i.e., average between Math and Verbal above 600), choose four

majors according to the following rule:

(a) Choose most preferred major according to the student’s list of preferences,

(b) Choose the second most preferred major according to the student’s list of preferences,

(c) Choose the major with the highest average wage41 among all majors considering the

transition matrix previously computed,

(d) Choose the major with the highest average wage among all feasible majors (i.e., majors

for which the student has a positive probability of assignment) considering the transi-

tion matrix previously computed.

5. For students with low scores (i.e., average between Math and Verbal below 600), choose four

majors according to the following rule:

(a) Choose the most preferred major according to the student’s list of preferences,

(b) Choose the second most preferred major according to the student’s list of preferences,

(c) Choose the major with the highest expected wage among all majors belonging to IPs or

CFTs,

(d) Choose the major with the highest expected wage among all feasible majors (i.e., majors

for which the student has a positive probability of assignment) considering the transi-

tion matrix previously computed.

41Average wages are measured at the fourth year after graduation. This statistic is computed by SIES and provided
to us by MINEDUC.
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C.5 Additional Results

Table C.4: Regression Results among Openers - T1 vs T4

Applications Assignment

Modified Incr. Prob. Improved Entered Benefited&Persisted
(1) (2) (3) (4) (5)

Treatment 4 0.0068 -0.0064 0.0013 -0.0049 -0.0014
(0.0056) (0.0065) (0.0033) (0.0058) (0.0024)

[0.5842] {0.6730} [0.6634] {0.6730} [0.7426] {0.6900} [0.6634] {0.6730} [0.7426] {0.6900}
Mean (Control) 0.1316 0.0467 0.0322 0.0299 0.0217
Observations 14,960 3,804 11,724 3,116 14,840
Stratas FE Yes Yes Yes Yes Yes

NOTES. Modified is a binary variable equal to 1 if the student modified her application after the information was sent, 0 otherwise. Incr.
Prob. is a binary variable equal to 1 if the admission probability associated to the initial rank-ordered list submitted is lower than the one
associated to the final rank-ordered list, 0 otherwise. This variable is defined only for students with a positive admission risk given their
initial rank-ordered list. Improved is a dummy variable equal to 1 if the student was assigned to a program ranked above the one where they
would have been assigned given their initial rank-ordered list, 0 otherwise. It is only defined for the sample of students who would have
been matched to a program given their initial rank-ordered list and who did not remove this program from their list. Entered is defined for
students who would not have been assigned to any program given the initial rank-ordered list they submitted. It is a binary variable equal
to 1 if the student is assigned given their rank-ordered list submitted after the information was sent, 0 otherwise. Benefited&Persisted
is a binary variable equal to 1 if the student either entered or improved and persisted for two years in the same program, 0 otherwise.
Robust standard errors are reported in parentheses. We report in brackets the p-values adjusted for multiple hypothesis testing following
the procedure described in Romano and Wolf (2005) and in braces the q-values computed following Anderson (2008a).
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Table C.5: Impact on Absolute Biases in Average Earnings

Top-True Top-Reported Bottom-True Bottom-Reported Random
(1) (2) (3) (4) (5)

Treatment 2 -7.5128 3.2644 6.1639 -1.6456 -0.4523
(4.3712) (2.9052) (6.9910) (2.9638) (3.1996)

Treatment 3 -4.3718 -1.4839 8.3782 -2.3558 -1.6792
(4.2917) (2.7023) (6.2008) (2.9911) (3.1411)

Mean (Control) 53.4459 47.4743 48.4287 51.5722 55.3175
Observations 1,353 2,945 673 2,657 2,751
Stratas FE Yes Yes Yes Yes Yes

NOTES. This table reports results from the OLS estimation of linear regression models where the dependent
variable is the absolute value of students’ subjective bias in their admission probabilities for different types of
programs. The sample is limited to students who responded to the survey and opened the intervention. Robust
standard errors reported in parentheses.
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D Appendix to Section 5

D.1 Background

As in the previous year, students participated in a national exam that provided them with test

scores that the system uses to compute their application scores in each program they listed in their

preference list. However, MINEDUC introduced a series of changes to the admission process. First,

they completely redesigned the admission exam by changing its focus (moving from knowledge-

based to attitude-based) and adding a math-specific exam. In addition, MINEDUC changed the

normalization rules and, more importantly, the range of possible scores, moving from a [210, 850]

to a [100, 1000] scale.

Second, MINEDUC introduced the option to take the national exam twice per year and changed

the rules on how to compute application scores for students that took the exam several times and

thus have multiple pools of scores.42 Specifically, they moved from a pool-based approach, in

which the application score is computed considering the best pool among all the ones available, to

a test-specific approach, in which the application score is computed considering the best score for

each specific exam, potentially combining different pools of scores.

Finally, given all the changes mentioned above and the advice from the research team, MINE-

DUC decided to increase the constraint on the length of preference lists from ten to twenty pro-

grams.

A critical consequence of all these changes is that the previous year’s cutoffs were not as in-

formative as in previous years. Indeed, many students had no idea how to assess their chances

of admission, as they had no reference point, and the uncertainty was considerably higher. As

a result, MINEDUC decided it was crucial to provide students with as much guidance as possi-

ble, and thus decided to implement our information policy for all students nationwide. Hence,

students who opened their personalized websites received the same information fields, so we do

not have proper treatment and control groups as described in Section 4. Nevertheless, as we later

discuss, we can still estimate the effect of the intervention using an encouragement design.

42Moreover, MINEDUC had to introduce conversion tables to transform scores from the previous scale to the new
one.
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Figure D.1: Feedback on Application Strategy

D.2 Instrument Validity

For an instrument to be valid, we need it to satisfy two conditions: (i) relevance, and (ii) exclusion.

The former states that the instrument is correlated with the endogeneous variable of interest. In

our case, we need to confirm that receiving a whatsapp is correlated with opening the intervention.

We consider the first stage regression

Oi ∼ Wi +Xi + ϵi

where Oi = 1 if the student opens the intervention and zero otherwise; Wi = 1 if student i receives

a Whatsapp encouragement message and zero otherwsie; Xi is a vector of control variables (in this

case, the risk level group); and ϵi is an error term.

Table D.1 reports the results of the first-stage of our 2SLS estimation. We find that receiving the

WhatsApp reminder significantly increases the probability that students access their personalized

website, corresponding to a 34% increase (F-stat = 1414.6).

In our context, the instrument is exogeneous by design as we randomize students receiving the

encouragement message. Table D.2 confirms this by showing that students who randomly received

the reminder are, on average, similar to those who did not. Each column reports results from the
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Table D.1: Regression Results: First Stage

Open Website
(1)

Receive Whatsapp 0.1782
(0.0029)

Risk Group Yes
Mean (No Reminder) 0.5217
Observations 132,893
F-statistic 1414.8112

NOTES. This table shows results from the
first-stage regression of the instrumental vari-
able strategy.

OLS estimation of a linear regression model, considering different students’ characteristics as the

outcome variable. We find that the characteristics of students who received the reminder do not

significantly differ compared to those who did not, confirming that the encouragement messages

were properly randomized.

Table D.2: Balance Tests - Received Whatsapp Reminder

Demographics High-School Type Scores

Female Low-Income Metrop. Region Public Voucher GPA Math-Verbal
(1) (2) (3) (4) (5) (6) (7)

Received Whatsapp 0.000 -0.000 -0.003 0.004 -0.001 -0.001 -0.001
(0.003) (0.003) (0.003) (0.003) (0.003) (0.004) (0.006)

Constant 0.603 0.445 0.353 0.306 0.565 6.029 0.143
(0.002) (0.002) (0.002) (0.001) (0.002) (0.002) (0.003)

Observations 132,892 132,893 132,524 132,893 132,060 132,892 132,892

NOTES. This table compares the characteristics of applicants who received the Whatsapp reminder to open their personalized website
against those who did not. Each column reports results from the OLS estimation of a linear regression model, considering different students’
characteristics as the outcome variable. Robust standard errors are reported in parentheses.
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D.3 Additional results

Table D.3: Summary Statistics by Risk Group

N Applications Assignment

Modified Incr. Improved Entered Benefited
Prob. & Enrolled

(1) (2) (3) (4) (5)
Panel A: Did not open
High Risk 14,345 0.146 0.047 0.082 0.034 0.017
Medium Risk 6,388 0.163 0.047 0.024 0.053 0.023
Low Risk 36,419 0.193 0.047 0.058 0.045 0.046
Panel A: Opened
High Risk 15,983 0.291 0.108 0.054 0.083 0.050
Medium Risk 7,462 0.275 0.108 0.044 0.096 0.044
Low Risk 52,296 0.282 0.108 0.083 0.096 0.067

NOTES. The high-risk group (low-risk, resp.) includes students with an overall admission probability below
1% (above 99%, resp.) given their initial rank-ordered list. Students considered as facing a medium risk
have an overall admission probability between 1% and 99% given their initial rank-ordered list. Modified is a
binary variable equal to 1 if the student modified her application after the information was sent, 0 otherwise.
Incr. Prob. is a binary variable equal to 1 if the admission probability associated to the initial rank-ordered
list submitted is lower than the one associated to the final rank-ordered list, 0 otherwise. This variable is
defined only for students with a positive admission risk given their initial rank-ordered list. Improved is
a dummy variable equal to 1 if the student was assigned to a program ranked above the one where they
would have been assigned given their initial rank-ordered list, 0 otherwise. It is only defined for the sample
of students who would have been matched to a program given their initial rank-ordered list and who did
not remove this program from their list. Entered is defined for students who would not have been assigned
to any program given the initial rank-ordered list they submitted. Entered is a binary variable equal to 1 if
the student is assigned given their rank-ordered list submitted after the information was sent, 0 otherwise.
Benefited&Enrolled is a binary variable equal to 1 if the student either entered or improved and enrolled, 0
otherwise.

70



Table D.4: Regression Results: Instrumental Variables - By Risk Level

Entered Improved

High Medium Medium Low
(1) (2) (3) (4)

Open 0.0334 0.0348 0.0104 0.0379
(0.0157) (0.0449) (0.0236) (0.0119)

Mean (No Reminder) 0.0578 0.0740 0.0342 0.0714
Observations 30,006 5,108 8,547 86,873

NOTES. The high-risk group (low-risk, resp.) includes students with an overall
admission probability below 1% (above 99%, resp.) given their initial rank-ordered
list. Students considered as facing a medium risk have an overall admission prob-
ability between 1% and 99% given their initial rank-ordered list. Improved is a
dummy variable equal to 1 if the student was assigned to a program ranked above
the one where they would have been assigned given their initial rank-ordered list,
0 otherwise. It is only defined for the sample of students who would have been
matched to a program given their initial rank-ordered list and who did not remove
this program from their list. Entered is defined for students who would not have
been assigned to any program given the initial rank-ordered list they submitted. It
is a binary variable equal to 1 if the student is assigned given their rank-ordered
list submitted after the information was sent, 0 otherwise. Robust standard errors
are reported in parentheses.
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Table D.5: Regression Results: Search Engine

Applications Assignment

Modified Incr. Improved Entered Benefited
Prob. & Enrolled

(1) (2) (3) (4) (5)
Panel A:
Search 0.2037 0.1215 0.0464 0.0831 0.0419

(0.0045) (0.0060) (0.0035) (0.0057) (0.0026)
Panel B: Controlling for Number of Applications
Search 0.2018 0.1144 0.0478 0.0778 0.0417

(0.0042) (0.0058) (0.0035) (0.0056) (0.0026)
Mean (No Text) 0.2829 0.1077 0.0801 0.0849 0.0609
Observations 75,741 22,080 55,875 18,650 74,525
Risk Group Yes Yes Yes Yes Yes

NOTES. Modified is a binary variable equal to 1 if the student modified her application after the information was sent, 0
otherwise. Incr. Prob. is a binary variable equal to 1 if the admission probability associated to the initial rank-ordered list
submitted is lower than the one associated to the final rank-ordered list, 0 otherwise. This variable is defined only for students
with a positive admission risk given their initial rank-ordered list. Improved is a dummy variable equal to 1 if the student
was assigned to a program ranked above the one where they would have been assigned given their initial rank-ordered list, 0
otherwise. It is only defined for the sample of students who would have been matched to a program given their initial rank-
ordered list and who did not remove this program from their list. Entered is defined for students who would not have been
assigned to any program given the initial rank-ordered list they submitted. Entered is a binary variable equal to 1 if the student
is assigned given their rank-ordered list submitted after the information was sent, 0 otherwise. Benefited&Enrolled is a binary
variable equal to 1 if the student either entered or improved and enrolled, 0 otherwise. Robust standard errors are reported in
parentheses.
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D.4 Drivers

To examine whether the policy influences behavior through changes in beliefs on admission prob-

abilities, we use the panel of respondents from the baseline and endline surveys conducted in

2023. For each student in the panel, we calculate a measure of bias in expected cutoffs and a mea-

sure of bias in admission probabilities by taking the difference between students’ subjective beliefs

(elicited in the baseline and endline surveys) and the rational expectations of expected cutoffs and

admission probabilities. We then compute the difference between the absolute value of the bias in

beliefs for baseline and end-line measures across the top-reported, bottom-reported, and true top

programs declared in the baseline survey, and over their overall admission probability.

Table D.6: Regression Results: Reduction in Absolute Bias

Cutoffs Adm. Probs.

Top-true Top-reported Bottom-reported Top-true Top-reported Bottom-reported
(1) (2) (3) (4) (5) (6)

Open -15.0048 -13.1548 -9.4951 -1.1966 -1.7047 -3.4078
(5.4299) (5.3771) (5.5784) (1.4676) (1.4773) (1.5430)

Mean (Not Opening) -15.8534 -16.7030 -14.5292 -5.5208 -5.4095 -2.1878
Observations 2,791 2,760 2,701 2,463 2,434 2,434
Risk Group Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes

NOTES. The sample considers all students who answered the questions related to the expected cutoffs or admission probabilities in the 2023
baseline and endline surveys. Robust standard errors are reported in parentheses.
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