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In this paper we present the design and implementation of a new system to solve the Chilean college

admissions problem. We develop an algorithm that obtains all stable allocations when preferences are not

strict and when all tied students in the last seat of a program (if any) must be allocated, and we used this

algorithm to determine which mechanism was used to perform the allocation. In addition, we propose a

new method to incorporate the affirmative action that is part of the system and correct the inefficiencies

that arise from having double-assigned students. By unifying the regular admission with the affirmative

action, we have improved the allocation of approximately 3% of students every year since 2016. From a

theoretical standpoint, we introduce a new concept of stability and we show that some desired properties,

such as strategy-proofness and monotonicity, cannot be guaranteed under flexible quotas. Nevertheless, we

show that the mechanism is strategy-proof in the large, and therefore truthful reporting is approximately

optimal.
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1. Introduction

Centralized admission systems have been increasingly used in recent years to carry out the assign-

ment of students to schools and colleges. A variety of mechanisms have been studied, including

the celebrated Deferred Acceptance (DA) algorithm (Gale and Shapley (1962)), the Immediate

Acceptance (Boston) algorithm (Abdulkadiroglu et al. (2005) and Ergin and Somnez (2006)), the

Top-Trading Cycles algorithm (Shapley and Scarf (1974)), among many others. An important

part of the literature in market design has been devoted to characterize these mechanisms, mostly

focusing on canonical examples that illustrate their properties. Another important body of the

literature studies real life applications, by combining the aforementioned mechanisms with specific

rules such as restrictions in the length of preferences, tie breaking rules, affirmative actions, among

many others. In this paper we try to contribute to both by studying the Chilean college admissions

problem.

A centralized mechanism to match students to programs1 has been used in Chile since the

late 1960’s by the Departamento de Evaluación, Medición y Registro Educacional (DEMRE), the

analogue of the American College Board. Every year more than 250,000 students participate in

the system, which includes more than 1,400 programs in 33 universities. This system has two

main2 components: a regular admission track, where all students that graduated from high-school

can participate; and an affirmative action policy, that aims to benefit underrepresented groups

by offering them reserved seats and economic support. More specifically, to be considered for the

reserve seats and the scholarship – which is called “Beca de Excelencia Academica”, or simply BEA

– a student must belong to the top 10% of his class, must graduate from a public/voucher school

and his family income must be among the lower four quintiles.

When the affirmative action was introduced in 2007, the procedure to match students to programs

relied on a black-box software that could not be updated to incorporate this new feature. Hence,

the authorities decided that the admission of BEA students would be run after the admission

of Regular students. Since BEA students can apply to both regular and reserve seats3, running



Rios et al.: Improving the Chilean College Admissions System
Article submitted to Operations Research; manuscript no. 1 3

the process sequentially introduces a series of inefficiencies. For instance, a BEA student can be

assigned to two different programs, and the seat that this student decides not to take cannot

be re-allocated to another student. Moreover, the double-assignment generates confusion among

students and increases the chances of them enrolling in a less preferred program.

In this paper we provide a “reverse-engineering” approach to correct these inefficiencies. The

reason why we start from the current system and we don’t simply propose a re-design is that

DEMRE wanted to keep the current rules and incorporate the reserved seats while keeping the

system as close as possible to its current state. Hence, there were two main questions to be answered:

(1) what was the mechanism that was currently being used, and (2) how could this mechanism

be modified to unify the admissions for regular and reserve seats. To answer these questions and

address the aforementioned inefficiencies, our first goal was to determine the mechanism “inside

the black-box”. Based on the rules of the system, we had enough evidence to think that the desired

outcome was a stable matching. In addition, we realized that unlike other systems all students

tied in the last seat had to be admitted, so quotas must be flexible in order to allocate them.

With these features in mind, we implemented an algorithm based on Bäıou and Balinski (2004)

that obtains all stable allocations satisfying the rules of the system. By comparing the results

of our algorithm with the actual assignment of past years we found that the mechanism used is

a university-proposing deferred acceptance, with the special feature of flexible quotas to allocate

all tied students in the last seat. Furthermore, we show that, unlike the classic DA, the Chilean

mechanism is not strategy-proof nor monotone. Nevertheless, we show that strategic behavior is

not a major concern since our mechanism is strategy-proof in the large.

After determining the algorithm that was being used, our next goal was to integrate both systems

in order to maximize the utilization of vacancies. To solve this problem we introduce a new approach

where each type of seat (regular or reserve) is assumed to belong to a different program with its

own capacity and requirements, and students benefited by the affirmative action can apply to both.

This research is the outcome of an ongoing multiyear collaboration with DEMRE (2012-2017),

aiming to improve the Chilean college admissions system. All the solutions described in this paper
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were adopted and implemented starting in 2014 with a pilot phase. In 2015 the system switched

to a student-optimal mechanism with flexible quotas, and in 2016 the unified allocation was finally

adopted. Based on simulations in 2014-2015 and actual data in 2016, we find that our implemen-

tation has improved the allocation of approximately 3% of the students participating each year.

Furthermore, our “white box” implementation made the admission process fully transparent and

reduced the execution time from over 5 hours to a couple of minutes. This improvement in trans-

parency and performance has allowed the evaluation and introduction of different policies (e.g.

the inclusion of the high-school class rank as admission factor; see Larroucau et al. (2015), among

others) that otherwise could not have been included.

The reminder of the paper is organized as follows. Section 2 provides a background on the Chilean

college admissions system and introduces the main features of the problem. In Section 3 we discuss

the closest related literature to our setting. In Section 4 we develop a model that formalizes our

problem, we describe our mechanisms and present their properties. We discuss the implementation

in Section 5. Finally, we provide concluding remarks in Section 6.

2. The Chilean College Admissions System

In order to apply to any program in the 33 universities that are part of the centralized system

run by CRUCH4, each applicant undergoes a series of standardized tests (Prueba de Selección

Universitaria or PSU). These tests include Math, Language, and a choice between Science or

History, providing a score for each of them. The performance of students during high-school gives

two additional scores, one obtained from the average grade along high-school (Notas de Enseñanza

Media or NEM) and a second that depends on the relative position of the student among his/her

cohort (Ranking de Notas or Rank)5.

Once they have their scores, each student can apply to at most 10 different programs at no cost.

These programs must be listed in strict order of preference. Each program defines a set of specific

requirements that must be met by applicants to be acceptable, such as minimum application score

or minimum tests scores. In addition, each program freely6 defines the weights assigned to each
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score and also the vacancies offered for (i) the Regular process, where all students compete, and

for (ii) the special admission track related to the affirmative action policy (BEA process/track).

Each program’s preference list is defined by first filtering all applicants that do not meet the

special requirements. Then, students are ordered in terms of their application scores, which are

computed as the weighted sum of the applicants’ scores and the weights pre-defined by each pro-

gram. Note that two candidates can obtain the same application score, and therefore programs’

preferences need not be strict.

Considering the preference lists of the applicants and programs, as well as the vacancies offered

in both admission tracks, DEMRE runs an assignment algorithm to match students and programs.

Specifically, the Regular process is first solved by considering all the applications and the regular

vacancies. Once the Regular process is done, the BEA process is run considering only the applica-

tions of students shortlisted for the scholarship and those programs in which they were wait-listed

in the Regular process. Thus, some students who are assigned a regular vacancy might later decline

it if admitted to a preferred program through the BEA admission process. The declined positions

can not be re-assigned, and therefore are lost7.

DEMRE performs the matching for both processes using a black-box software for which no

information is available regarding the specific algorithm used. Instead, the following description is

provided8:

“SORTING OF APPLICANTS PER PROGRAM AND ELIMINATION OF MULTIPLE ALLOCA-

TIONS:

(a) Once the final application score is computed, candidates will be ordered in strict decreasing order

based on their scores in each program.

(b) Programs complete their vacancies starting with the applicant that is first in the list of candidates,

and continue in order of precedence until seats are full.

(c) If an applicant is selected in his first choice, then he is erased from the lists of his 2nd, 3th,

4th, until his last preference. If he is not selected in his first choice, he is wait-listed and moves on to

compete for his 2nd preference. If he is selected in this preference, he is dropped from the list of his 3th

to this 10th choice, and so on. In this way, it is possible that a student is selected in his 6th preference

and wait-listed in his top five preferences; however, he will be dropped from the lists of his preferences

7th to 10th.
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(d) This procedure to select candidates is the result of an agreement between the universities of having

a unified and integrated process, so that no student is admitted by more than one program. Nevertheless,

a student can be wait-listed in more than one program if his score is not enough to be admitted.

(e) All candidates that apply and satisfy the requirements of the corresponding program and institu-

tion will be wait-listed.

THEREFORE, IT IS FUNDAMENTAL THAT APPLICANTS SELECT THEIR PROGRAMS IN

THE SAME ORDER AS THEIR PREFERENCES”.

This description suggests that the final allocation must be stable, in the sense that there is no pair

student/program who simultaneously prefers to be matched together rather than to their matches

in the proposed assignment. Indeed, as the results are public and students can easily check if their

scores are higher than that of the last admitted in a program they prefer, legal problems may arise

if the resulting matching is unstable. However, it is unclear from the description which specific

stable assignment is implemented. Moreover, by analyzing the results of previous assignments we

realized that, in case of a tie in the last seat of a program, the number of seats increased in order

to include all tied applicants. This feature of the system was confirmed by DEMRE, and applies

to both admission tracks (Regular and BEA). From now on we refer to this as flexible quotas.

Another important feature of the system is that the admission tracks are processed sequentially.

In particular, DEMRE begins solving the Regular process by considering all students (Regular

and BEA), applications, and the regular seats. Then, using the results of their black-box they

update the applications of BEA students in order to consider only those preferences where they

were wait-listed in the Regular process. Finally, considering only BEA students, their updated

preferences and the reserve seats, DEMRE runs the same black-box to obtain the assignment for

the BEA process. Notice that a BEA student can be double-assigned9, and that BEA students

always prefer their allocation in the BEA process. Nevertheless, DEMRE reports both allocations

and allows double-assigned students to choose where to enroll. This introduces large inefficiencies,

since the seats that are assigned but not taken by double-assigned students are not re-allocated,

and therefore could lost if they are not re-allocated during the enrollment process10.
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3. Literature review

This paper is related to several strands of the literature. Regarding the mechanism, Biró and

Kiselgof (2013) analyze the college admissions system in Hungary, where all students tied in the

lowest rank group of a program are rejected if their admission would exceed the quota. This

mechanism is opposed to the Chilean case, where the quota is increased just enough so that all

students in the tie can be admitted. Biró and Kiselgof (2013) formalize these ideas by introducing

the concepts of H-stability and L-stability, that correspond to the rules in Hungary and Chile

respectively. They also provide a natural adaptation of the Deferred Acceptance algorithm to

compute H-stable and L-stable based on ascending score limits, and provide an alternative proof

of the manipulability of H-stable and L-stable mechanisms. In a recent paper, Kamiyama (2017)

presents a polynomial algorithm to check whether a student can manipulate her preferences to

obtain a better allocation.

Our paper is also related to the literature on affirmative action. Most of the research in this

strand has focused on proposing mechanisms to solve the college admissions problem with diver-

sity constraints and deriving properties such as stability, strategy proofness and Pareto optimality.

From a theoretical perspective, Echenique and Yenmez (2012) point out that the main tension

between diversity concerns and stability is the existence of complementarities, although the theory

requires substitutability for colleges’ choices. Abdulkadiroğlu (2007) explores the Deferred Accep-

tance algorithm under type-specific quotas, finding that the student-proposing DA is strategy proof

for students if colleges’ preferences satisfy responsiveness. Kojima (2012) shows that majority quo-

tas may actually hurt minority students, which will be to the detriment of the aims of affirmative

action policies. Consequently, Hafalir et al. (2013) propose the use of minority reserves to over-

come this problem, showing that the deferred acceptance algorithm with minority reserves Pareto

dominates the one with majority quotas. Ehlers et al. (2014) extend the previous model to account

for multiple disjoint types, and propose extensions of the Deferred-Acceptance algorithm to incor-

porate soft and hard bounds. Other types of constraints are considered by Kamada and Kojima
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(2015), who study problems with distributional constraints motivated by the Japanese Medical

Residency. The authors propose a mechanism that respects these constraints while satisfying other

desirable properties such as stability, efficiency and incentives.

Some authors have recently analyzed the impact of the order in which reserves are processed. Dur

et al. (2016a) analyze the Boston’s school system and show that the precedence order in which seats

are filled has important quantitative effects on distributional objectives. This paper formalizes our

idea that processing reserve seats in a lower precedence order benefits BEA students. In a follow-up

paper, Dur et al. (2016b) characterize optimal policies when there are multiple reserve groups, and

analyze their impact using Chicago’s system data.

4. Model

The following framework is assumed hereafter. Consider two finite sets of agents: programs C =

{c1, . . . , cm} and applicants A = {a1, . . . , an}. Let V ⊂ C × A be the set of feasible pairs, with

(c, a)∈ V meaning that student a has submitted an application to program c and meets the specific

requirements to be admissible in that program. A feasible assignment is any subset µ ⊆ V . We

denote by µ(a) = {c∈C : (c, a)∈ µ} the set of programs assigned to a and µ(c) = {a∈A : (c, a)∈ µ}

the set of students assigned to program c. Each program c has a quota qc ∈ N that limits the

number of students that can be admitted. Moreover, program c∈C ranks the applicants according

to a total pre-order ≤c, namely a transitive relation in which all pairs of students are comparable.

The indifference a∼c a
′ denotes as usual the fact that we simultaneously have a≤c a

′ and a′ ≤c a,

and we write a<c a
′ when a≤c a

′ but not a∼c a
′. On the other side of the market, each applicant

a∈A ranks the programs according to a strict total order <a, i.e. for any programs c, c′ such that

c >a ∅ and c′ >a ∅ (i.e. c, c′ are acceptable to student a), we have either c <a c
′ or c′ <a c.

The rest of this section is organized as follows. In Section 4.1 we revisit the college admissions

problem with strict preferences in both sides. In Section 4.2 we extend this model to incorporate

non-strict preferences and flexible quotas. In Section 4.3 we describe how to adapt the model

to incorporate the affirmative action, and in Section 4.4 we characterize the properties of this

mechanism.
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4.1. Stable Matchings with Strict Preferences

We start with some basic definitions. A matching is an assignment µ ⊆ V such that for each

applicant a the set of assigned programs µ(a) has at most one element, while for each program c

the set of assigned students µ(c) has at most qc elements. When preferences are strict no ties will

occur, so we don’t have to worry about flexible quotas.

A matching µ is stable if for all pairs (c, a)∈ V \µ we have that either the set µ(a) has an element

preferred over c in the strict order <a, or the set µ(c) contains qc elements preferred over a in

the strict order <c. In the first case the applicant a likes the match proposed by µ better than c,

while in the second case the program has all its positions filled with students strictly preferred over

a. If both conditions fail simultaneously a and c would be better off by being matched together

rather than accepting the assignment µ, in which case (c, a) forms a blocking pair. In other words,

a matching is stable if it has no blocking pairs.

An instance of the college admissions problem can be fully described in terms of a pair Γ = (G,q),

where G= (V,E) is an admission graph consisting of a set of feasible nodes V on a grid C×A and

a set of directed arcs E ⊆ V × V that represent programs and applicants preferences; and q is a

vector of quotas. Each row in the grid represents a program c ∈C, and each column an applicant

a∈A. The preferences of program c are encoded by horizontal arcs from (c, a) to (c, a′) whenever

a≤c a
′, and those of student a by vertical arcs from (c, a) to (c′, a) representing c <a c

′. Figure 1

shows a minor variation of the example considered in Bäıou and Balinski (2004). For simplicity,

the arcs that can be inferred by transitivity are omitted.

By exploiting this graph representation, Bäıou and Balinski (2004) develop an algorithm to

find two extreme (and the most interesting) stable matchings. The algorithm works by recursively

eliminating pairs (c, a)∈ V that are strictly dominated. More precisely, (c, a) is a-dominated if there

are qc or more applicants that have c as their top choice and dominate a in the strict preference <c.

In this case, program c is guaranteed to fill its quota with applicants above a so that a has no chance

to be assigned to c, and the pair (c, a) can be eliminated from further consideration. Similarly,
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Figure 1 Admission graph with strict preferences.

c1

a1 a2 a3 a4 a5 a6 a7 a8 a9
q1 = 1
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c3 q3 = 2

c4 q4 = 2

c5 q5 = 1

Figure 2 Domination-free subgraph, student-optimal and university-optimal matchings

c1

a1 a2 a3 a4 a5 a6 a7 a8 a9
q1 = 1

c2 q2 = 2

c3 q3 = 2

c4 q4 = 2

c5 q5 = 1

(c, a) is c-dominated if there is a program c̃ >a c which places a among the top qc̃ applicants (i.e.

less than qc̃ applicants are ranked above a).

Since removing a node may change the top choices for students and programs, new dominations

may arise and the elimination must continue recursively until no further dominated nodes are found.

Upon completion, the admission graph is reduced to a domination-free subgraph G∗ = (V ∗,E∗),

with node set V ∗ ⊆ V in which all dominated nodes have been removed. Figure 2 presents the

domination free-subgraph corresponding to the instance described in Figure 1.

The domination free equivalent subgraph G∗ contains all possible stable allocations, including

the two most interesting (and extreme) cases: the student-optimal matching µ∗A, that assigns each

applicant a ∈A to its best remaining choice in G∗ (if any); and the university-optimal matching

µ∗C that assigns to each program c ∈ C its qc top choices in G∗. In Figure 2 the light gray circles

are nodes belonging exclusively to µ∗A, the gray circles are nodes only in µ∗C , and the black circles
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represent the nodes that are simultaneously in µ∗A and µ∗C . Notice that these two extreme allocations

are not the same.

4.2. Stability with Ties and Flexible Quotas: FQ-matchings

Consider now the case where preferences of programs may not be strict, and that programs are

required to adjust their quotas to include all potential candidates tied in the last vacancy. More

precisely, a program c may exceed its quota qc only if the last group of students admitted are

in a tie and upon rejecting all these students there are unassigned vacancies. We also impose a

non-discrimination condition: an applicant a′ who is tied with a student a admitted to a program

c must himself be granted admission to c or better. The following definitions state these conditions

formally.

Definition 1. We say that µ satisfies quotas-up-to-ties if for each program c and a∈ µ(c) the set

of strictly preferred students assigned to c satisfies |{a′ ∈ µ(c) : a′ >c a}|< qc.

Definition 2. We say that µ satisfies non-discrimination if whenever a ∈ µ(c) and a′ ∼c a with

(c, a′)∈ V then a′ ∈ µ(c′) for some program c′ ≥a′ c.

With these preliminary definitions we introduce our notion of matching, which requires in addi-

tion that each applicant is assigned to at most one program.

Definition 3. A matching with flexible quotas (FQ-matching) is an assignment µ⊆ V that satisfies

quotas-up-to-ties and non-discrimination, and for which every applicant a ∈ A is assigned to at

most one program so that µ(a) has at most one element.

By construction, FQ-matchings are stable. In Appendix A we provide a formal proof of stability,

and in Appendix B we describe how our definition of FQ-matching relates to other notions of

stability, such as weak, strong and super-stability. In addition, notice that if there are no ties in the

preferences of programs then non-discrimination holds trivially, while quotas-up-to-ties reduces to

|µ(c)| ≤ qc; hence, FQ-matching coincides with the standard notion of stable matching.
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Figure 3 Admission graph with non-strict preferences
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c4 q4 = 2

c5 q5 = 1

Now we analyze how to compute FQ-matchings. Notice first that, given any instance Γ = (G,q)

with G= (V,E), we can build two extreme assignments (which are not necessarily FQ-matchings):

one that greedily assigns each student to its best option and the other that greedily fills the quota

of each program with its top qc applicants. We say that an applicant a is top qc for program c if

(c, a)∈ V and there are less than qc candidates strictly above him, namely, |{(c, a′)∈ V : a′ >c a}|<

qc.

Definition 4. The student-optimal greedy assignment µA matches each applicant a to his/her top

preference in G (if any), while the university-optimal greedy assignment µC is obtained similarly

by assigning to each program c its top qc applicants.

By construction both µA and µC are stable, and they also satisfy non-discrimination. However,

they may fail to be FQ-matchings as they ignore the quota restrictions. Indeed, while µA assigns

each student to at most one program, there is no reason that quotas-up-to-ties should be satisfied,

and in fact this may fail for the most demanded programs. This is illustrated11 in Figure 3, where

µA(c1) = {a2, a3, a6, a8} and therefore µA is not an FQ-matching.

Similarly, although µC always satisfies quotas-up-to-ties, a good student may be top ranked in

several programs and could be multiply assigned. Note however that in the previous example µC

assigns each student to exactly one program (except for a4 who remains unassigned) so in this case

µC provides a stable FQ-matching.
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The next theorem shows that quota violations in the greedy assignments do not occur when G

has no strictly dominated nodes. Here we keep the same definition of a-dominated and c-dominated

nodes stated previously.

Theorem 1.

a) If the instance Γ has no a-dominated nodes then µA is a stable FQ-matching.

b) If the instance Γ has no c-dominated nodes then µC is a stable FQ-matching.

This result suggests that µA and µC should be computed only after removing the corresponding

strictly dominated nodes. In order to justify this procedure we must show first that such nodes

have no chance of being in any stable FQ-matching and that they can be safely dropped without

destroying nor creating any new stable FQ-matching. In the following we say that a sub-instance

Γ′ = (G′, q) with G′ = (V ′,E′), V ′ ⊆ V and E′ ⊆ V ′×V ′, is FQ-equivalent to Γ if it has exactly the

same stable FQ-matchings as Γ.

Theorem 2. Given an instance Γ = (G,q) with G= (V,E), if (c, a) ∈ V is either a-dominated or

c-dominated then (c, a) 6∈ µ for any stable FQ-matching µ, and the instance Γ′ = (G \ (c, a), q) is

equivalent to Γ.

The previous results justify the following procedure to compute stable matchings. Start by

removing every dominated node. After removing some nodes, the top choices for students and

programs may change and new dominations may arise, so the process must continue recursively

until no further dominated nodes are found. Upon completion we obtain a domination-free subgraph

G∗ ⊆ G. By Theorem 2, all along this elimination process we preserve exactly the same stable

FQ-matchings as in the original instance Γ. Then, in the last step we use the greedy algorithm in

G∗ to obtain an allocation. Theorem 1 ensures that the greedy assignments µA and µC computed

for Γ∗ = (G∗, q) are stable FQ-matchings12.

Applying this procedure to the example in Figure 3 we obtain the reduced graph G∗ presented

in Figure 4 and the greedy assignments µA (light gray) and µC (gray). In this case µA ∩µC = ∅ so

there are no black nodes. This example shows that the inclusion of a single tie may considerably

change the outcome. Further details on this example are provided in the Appendix E.
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Figure 4 Domination-free equivalent and optimal matchings with flexible quotas.
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4.3. Unifying Admission Tracks

Using the model described in the previous section we can directly include the affirmative action

and solve both admission tracks (Regular and BEA) simultaneously.

To accomplish this, we consider a unified admission instance ΓU = (GU , qU) where each program

c ∈ C is split into two virtual programs cR and cB that represent the Regular and the BEA

processes, with quotas qRc and qBc respectively. The preferences of students that are not shortlisted

for the scholarship remain unchanged. In contrast, each program in the preference list of a BEA

student is also divided into the two virtual programs, giving a higher position in the preference

list to the Regular process, i.e. for any two programs with c1 >a c2, the new preference order is

cR1 >a c
B
1 >a c

R
2 >a c

B
2 .

We decided to use this order because DEMRE wanted to prioritize BEA students. Then, by

applying to the regular seats first, BEA students with good scores can be admitted in regular seats,

reducing the competition for reserve seats and therefore weakly increasing the total number of

BEA students admitted in the system. This idea was formalized in Dur et al. (2013), and recently

extended to more reserve groups in Dur et al. (2016b).

Our next theorem shows that every student is weakly better off compared to the sequential

solution. Let µS
A be the student-optimal FQ-matching obtained by applying the sequential process,

and let µA(Γ) be the student-optimal FQ-matching for an instance Γ = (G,q). In addition, let
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ΓR and ΓB be the Regular and BEA instances respectively. Then, the sequential student-optimal

FQ-matching µS
A is defined as

µs
A(a) =


µA(ΓB)(a) if µA(ΓB)(a) 6= ∅

µA(ΓR)(a) otherwise.

(1)

Theorem 3. The unified student-optimal FQ-matching µA(ΓU) dominates the sequential student-

optimal assignment µS
A, that is to say, µA(ΓU)(a)≥a µ

S
A(a) for all a∈A.

4.4. Basic Properties of FQ-matchings

We already know that FQ-matchings are stable and satisfy quotas-up-to-ties and non-

discrimintation. In what follows we discuss four other relevant properties.

4.4.1. Optimality. Ensuring that a given matching is optimal among the set of stable match-

ings guarantees that no agent (student or program) can be better off without harming another

agent. In the Appendix A we show that the allocations µA and µC obtained from the procedure

described in the previous section are the optimal matchings for students and programs within the

set of stable FQ-matchings.

4.4.2. Lack of Monotonicity. Monotonicity is a relevant feature since it ensures that any

improvement in the valuation of an agent cannot harm his assignment. The examples we provide in

the Appendix E show that neither the student-optimal nor the university-optimal FQ-matchings

are monotone for students. This lack of monotonicity implies that a student could improve his

outcome by strategically under-performing in the tests. However, to accomplish this he would have

to know beforehand the preferences and scores of all other students, which is not possible since the

results are announced to all students at the same time. Thus, in practice the lack of monotonicity

of µA and µC is not a serious concern.

4.4.3. Lack of Strategy-Proofness. A strategy-proof (SP) mechanism ensures that no stu-

dent can be assigned to a more preferred program by misreporting their true preferences. In our
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context we only focus on strategy-proofness for students since applicants have to state their prefer-

ences after universities and when they already know their scores. Moreover, we will assume that the

reported weights of each program reflect the true “preference orders” over students, although the

underlying preferences of programs could be different than just a rank over students. For instance,

programs or the universities they belong to could also have preferences over sets of students, and

the quota policy could be seen as a strategy to reach some distributional concern. The examples

in the Appendix E show that neither the student-optimal FQ-matching nor the university-optimal

FQ-matching are strategy-proof.

4.4.4. Strategy-Proofness in the Large. The lack of strategy-proofness can be troublesome

because it may induce agents to misreport their preferences strategically, giving an unfair advantage

to more sophisticated students. However, we claim that this is not a problem in our setting due to

the large size of the market.

According to Azevedo and Budish (2017), a mechanism is strategy-proof in the large (SP-L) if, for

any full-support i.i.d. distribution of students’ reports, being truthful is approximately optimal in

large markets. SP-L is less restrictive than the classic notion of strategy-proofness, since it does not

require truthful reporting to be optimal for any market size, and only asks it to be approximately

optimal in large markets.

To use the framework in Azevedo and Budish (2017) we need some definitions. A mechanism

is semi-anonymous if agents can be divided in a finite set of types, and their outcome depends

only in their actions and their type. In addition, a mechanism is envy-free if no agent prefers the

assignment of another agent with the same type. Then, Theorem 1 in Azevedo and Budish (2017)

shows that a sufficient condition for a semi-anonymous mechanism to be SP-L is envy-freeness.

Therefore, to show that our mechanism is SP-L it is enough to show that it satisfies envy-freeness.

The proof of this is almost direct if we assume that students’ types are given by their vector

of scores and whether they belong to the Regular or BEA groups. Conditional on their types, we

have already shown that both university-optimal and student-optimal FQ-matchings are stable and
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satisfy non-discrimination. This directly implies that both FQ-matchings satisfy envy-freeness, and

therefore we conclude that our mechanism is approximately strategy-proof and interim incentive

compatible as long as the size of the market is large, which is the case in the Chilean college

admissions problem.

4.5. Flexible quotas as a sensible policy

As we have already discussed, the implementation of an FQ-matching involves a trade-off between

sacrificing SP and potentially exceeding capacities, and obtaining a better allocation for students in

the Pareto sense. If universities don’t want to arbitrarily discriminate students and their marginal

cost of increasing their capacity is low enough, allowing for ties and flexible quotas can be a

sensible policy because it translates to a Pareto improvement for students13 and eliminates any

fairness concerns that can arise due to tie breaking rules14. On the other hand, the implementation

of an FQ-matching implies the loss of strategy-proofness, raising the question on how important

this issue is in the current setting. However, the fact that our mechanism is SP-L and that the

Chilean college admissions problem is large ensures that strategic behavior is not a concern. In

fact, as Azevedo and Budish (2017) argue, the relevant distinction for practice in a large market

is whether a mechanism is “SP-L vs not SP-L” and not “SP vs not SP”, since students in a large

market do not know what are the realized reports of every other student, so imposing optimality

of truthful reporting against every report realization (as in SP) is too strong.

5. Implementation

In this section we report the results on the implementation of this project. We start providing a

general description of the Chilean college admissions problem. Then, we describe the results of our

first goal, which was to find the algorithm that has been used in Chile to perform the allocation.

Finally, we close this section with the results of unifying the admission tracks and other additional

side effects of this project.
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5.1. General Description

In Table 1 we present general descriptives on the programs that are part of the centralized admission

system. We observe that the number of universities has not changed, while the number of programs

has slightly increased. However, we see that the number of seats available has decreased over the

years.

Table 1 General description — Programs

2014 2015 2016

Universities 33 33 33

Programs 1,419 1,423 1,436

Regular seats 110,380 105,516 105,513

Reserve seats 4,394 4,422 4,295

To describe the other side of the market, in Table 2 we present the number of Regular and

BEA students at each stage of the admission process. A participant is a student that registered to

participate in the standardized national exam and has at least one valid score. Once the results

of the national exam are published, participants have five days to submit their applications to

the centralized clearinghouse. We refer to the students that apply to at least one program that is

part of the centralized system as applicants. Finally, we refer to students that were admitted by a

program that is part of the centralized system as assigned.

First, we observe that the total number of participants has increased over the years, reaching

a total of 267,311 participants in 2016. Second, comparing the number of participants and the

number of applicants we observe that less than a half of the students that registered for the national

exam applied to programs that are part of the system. The main reason for this is that CRUCH

sets a minimum threshold of 450 points for students to be eligible by any program that is part of

the system, and since tests are standardized to have mean 500 roughly half of the students will not

satisfy this criteria.
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Table 2 General description — students

Regular BEA

2014 2015 2016 2014 2015 2016

Participants Total 228,318 241,873 250,320 15,990 16,710 16,911

Applicants Total 108,144 113,900 129,896 11,017 11,688 12,010

Assigned
Regular seats 86,048 87,466 90,741 9,520 10,154 8,886

Reserve seats - - - 1,325 1,404 1,345

Also related to the application process, in Figure 5 we show the distribution of applications per

student for each year.

Figure 5 Distribution of applications per student
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The median number of applications is 4 and the share of each number of applications stays

roughly constant across years. As students are restricted to submit a list with no more than 10

programs, we observe that between 5% and 10% of applicants submit a full list of 10 applications.

Notice that some universities further restrict the number of programs to which a student can

apply, and also the position that an application can take in the applicant’s list15. Theoretically,
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any restriction on the length of the application list will break strategy-proofness. Nevertheless,

whether these constraints are binding or not in practice, and what the strategic implications are

for students, are questions for future research.

Even though the number of participants and applicants have increased over the years, Table 2

shows that the total number of admitted students has decreased, in line with the reduction of seats

that we see in Table 1. In fact, comparing applicants and assigned students we find that close to

80% get assigned to some program in 2014, 78% in 2015 and 70% in 2016.

In Figures 6a and 6b we show the distribution of the preference of assignment for Regular and

BEA students respectively. We see that close to 50% of students get assigned to their first reported

preference, and close to 90% get assigned to one of their first three preferences. Although both

Regular and BEA students exhibit the same pattern of assignment, it is worth noticing that the

latter get assigned consistently more to their first preference than Regular students.

Figure 6 Preference of assignment
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Finally, in Table 3 we present demographic characteristics of the students that are assigned.
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Table 3 General description — Assigned

Regular BEA

2014 2015 2016 2014 2015 2016

Assigned Total 86,048 87,466 90,741 9,745 10,378 10,231

Gender Female 49.5% 49.5% 50.2% 57.6% 58.4% 59.5%

Average

Scores

Math/Verbal1 588 589.3 588.7 591.1 595.9 593.4

NEM2 586 588.4 592 696.8 696.7 700.5

Rank3 608.7 614.4 615.5 770.6 776.9 774.5

Income4

[0, $288] 28.8% 26.4% 23.5% 46% 42.6% 40.9%

($288, $576] 26.7% 27.5% 29% 34.6% 37.1% 38.6%

($576, $1,584] 26.8% 27.5% 28.9% 18.7% 19.5% 19.1%

> $1,584 17.8% 18.6% 18.7% 0.7% 0.8% 1.4%

High-School

Private 23.4% 23.4% 22.5% 0% 0% 0%

Voucher5 52.4% 52.9% 53.3% 60.7% 61% 61.4%

Public 24.2% 23.7% 24.1% 39.3% 39% 38.6%

1 Score constructed with the average Math score and Verbal score. For students
using scores from previous year, we considered the maximum of both averages.

2 Score constructed with the average grade along high-school.
3 Score constructed with the relative position of the student among his/her class-

mates.
4 Gross Family monthly income in thousands Chilean pesos (nominal).
5 Partially Subsidized schools.

The fact that around 23% of admitted students graduated from a private school is surprising,

considering that they represent only 12% of the total number of participants in the admission

process. Similarly, students from the highest income group only represent 9% of the total number

of participants, but they account for 18% of admitted students. These numbers shed some light on

the huge inequalities in opportunities that characterize the Chilean college admission process.
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The point of having reserve seats is to alleviate these inequalities and favor underrepresented

groups. The comparison of the left and right columns in Table 3 illustrates this. Compared to

Regular students, in the BEA group the fraction of female students is higher, the average scores

in all the exams are also higher, the fraction of students with higher income levels is smaller, and

most of them come from public/voucher schools.

5.2. Determining the Current Mechanism

Our first goal was to identify which mechanism has been used to solve the Chilean college admissions

problem. After implementing the algorithms described above and including all the constraints

that are part of the system, we solved the admission instances from 2012 to 2014, comparing the

FQ-student-optimal and FQ-university-optimal allocations with the official results obtained using

DEMRE’s black box. Based on this comparison, the rules of the system and evidence provided by

DEMRE we concluded that the algorithm used is equivalent to the FQ-university-optimal matching,

as the results are exactly the same for all the years considered.

Given that our algorithm returns all stable allocations for each instance, by comparing the two

extreme assignments (FQ-student and FQ-univesity optimal) we find that the number of differences

between these allocations has been at most 10 since 2012. This suggests that the size of the core of

stable assignments in the Chilean case is rather small, supporting the theoretical results in Roth

and Peranson (2002) and Ashlagi et al. (2017).

Even though the number of differences is small, we proposed DEMRE to adopt a FQ-student

optimal matching because it benefits some students but, more importantly, because it is a message

for students that the mechanism aims to give them the best possible allocation. DEMRE agreed

with this view, and after a pilot version in 2014 they adopted our FQ-student optimal algorithm

to perform the allocation since 2015.

5.3. Integrating Admission Tracks

Having determined the algorithm that is used to perform the allocation, our second goal was to

integrate the admission tracks in order to alleviate the aforementioned inefficiencies. To accomplish
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this, we implemented the framework described in Section 4.3 and we ran it in parallel during the

admission processes of 2014 and 2015. Based on the results, we convinced DEMRE to adopt our

unified FQ-student optimal allocation in 2016, and this allocation has been the official mechanism

used since then. In this section we report the results from our simulations (2014 and 2015), and

the actual impact of our implementation in 2016.

In Table 4 we present a summary of the results. The first row presents the number of students

that would have been double-assigned under the old system. The second row presents the number

of students that improved their assignment compared to the old system. Finally, the third row

shows the number of students who are assigned to some program under the new system and weren’t

assigned in the old system.

Table 4 Impact of Unified Assignment 2014-2016

2014 2015 2016

Double Assignments 1,100 1,180 1,127

Improvements 1,737 1,915 1,749

New assignments 568 672 777

We observe that the number of students that benefit from the better use of vacancies is larger

than the number of vacancies lost due to double-assignments. The reason is that a student that

directly benefits from a new vacancy releases a vacancy that can be used by another student,

who in turn allows another student to take his old seat, and so on. This chain of improvements

eventually ends either because there are no students wait-listed in that program, or because they

reach a student who was unassigned and therefore does not release another seat. Overall, we observe

that around 3% of students who decide to apply to a program in the system benefited from our

implementation, and this number is relatively constant across years.

Improving the assignment of students is relevant because the probability of enrollment is increas-

ing in the preference of assignment16, and most programs in the system have positive and high
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Figure 7 Benefits of unifying the admission tracks - 2016
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expected returns (see Lara et al. (2017)). Moreover, there is evidence that students that were

assigned in low listed preferences have a higher probability of future dropout from their programs,

even after enrollment (see Canales and De los Ŕıos (2007)).

In Figure 7a we present the distribution of improvements in allocated preferences due to our

new approach. We observe that most students improve in their allocation by getting assigned to

the program listed immediately above the program they were assigned previously (improvement

equal to 1). In Figure 7b we show the preference of assignment for those students who were not

assigned under the old system and thanks to the new system are allocated. Most of the students

that were unassigned under the sequential allocation benefit from the unified allocation by getting

their top choice. A potential reason for this is that an important fraction of these students apply

to less than three programs.

We provide more details on those students that benefit from unifying the admission tracks in

Table 5.
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Table 5 General description — impact of unifying admission tracks

Improvements New Assignments

Regular BEA Regular BEA

2014 2015 2016 2014 2015 2016 2014 2015 2016 2014 2015 2016

Assigned Total 1,592 1,791 1,640 145 124 109 548 647 765 20 25 12

Gender Female 47.2% 44.4% 45.7% 66.9% 60.5% 62.4% 52.2% 47.9% 51.6% 65% 68% 58.3%

Average

Scores

Math/Verbal1 584.2 582 579.7 579.8 573.7 584.1 560.8 551.2 548.2 564.8 561 558

NEM2 577.8 576.9 575 686 675.7 691.1 540 538.9 538.4 677.1 658 689.2

Rank3 600.2 600.6 596.1 755.8 752.9 770 554.8 556.4 553.5 753.2 734 764.1

Income4

[$0, $288] 28.1% 27.4% 25.2% 48.3% 41.9% 48.6% 30.1% 32.3% 28.8% 60% 36% 75%

($288, $576] 30.2% 29% 31.3% 29.7% 39.5% 37.6% 34.5% 32.9% 34% 25% 32% 8.3%

($576, $1,584] 27.4% 29.3% 28.5% 20% 18.5% 13.8% 26.1% 24.3% 28.8% 15% 32% 16.7%

> $1,584 14.3% 14.3% 14.9% 2.1% 0% 0% 9.3% 10.5% 8.5% 0% 0% 0%

High-School

Private 18.4% 18.6% 16.2% 0% 0% 0% 13.8% 14.5% 13.4% 0% 0% 0%

Voucher5 56.7% 57.3% 56.7% 63.4% 61.3% 65.1% 59.5% 61.4% 61.5% 60% 72% 58.3%

Public 26.7% 24.9% 24.2% 27.1% 36.6% 38.7% 34.9% 24.1% 25% 40% 28% 41.7%

1 Score constructed with the average Math score and Verbal score. For students using scores from previous year, we considered
the maximum of both averages.

2 Score constructed with the average grade along high-school.
3 Score constructed with the relative position of the student among his/her classmates.
4 Gross Family monthly income in thousands Chilean pesos (nominal).
5 Partially Subsidized schools.

We first observe that most of the students that benefit from unifying the admission tracks

are Regular students. The reason is that vacancies that were dropped by a BEA student with

double assignment are now used by other students, and this generates improvement chains that

reach other (mostly Regular) students. In addition, comparing the characteristics of those who

improve (Improvements) with those who get assigned and would not under the old system (New

Assignments) we find that the latter group has lower scores, and as a larger fraction of students

who come from lower income families and public schools. The reason for this is that students who

improved were also assigned under the old system, while those from the New Assignments group
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were not. Therefore, students from the Improvements group have on average higher scores, and

these are positively correlated with family income.

The differences in terms of scores and demographics are also present if we compare these groups

with the overall group of assigned students described in Table 3. Indeed, previously assigned stu-

dents have on average higher scores and higher family income than students that were benefited

by the unified assignment. For instance, the share of assigned students coming from private high-

schools was about 24% for Regular students, while it was close to 18% and 14% for students in the

groups of Improvements and New Assignments respectively.

Another interesting result is that most of BEA students are assigned to regular seats, and more

than half of the reserve seats remain unfilled. Indeed, we proposed to DEMRE that they could use

the unfilled reserve seats with students from the Regular process, but they decided not to because

some universities “were not open to this option”. Nevertheless, we are working on convincing

CRUCH to incorporate this in future versions of the admission process.

5.4. Additional Side Effects

In terms of running times, our implementation considerably outperforms the algorithm used pre-

viously by DEMRE to solve the admissions problem. In fact, their black-box software takes up to

5 hours to return the final assignment, while our implementation solves the problem in less than

2 minutes on a standard laptop. This time reduction has had a significant impact since it allows

to evaluate different policy changes in the system, such as the inclusion of new admission criteria,

the impact of new instruments, and the redesign of affirmative action policies performed by the

mechanism. In particular, the new algorithm has been used to evaluate the effect of including

High School Grade Rankings in the Chilean admission process by performing several simulations

changing the conditions in which this new instrument is included by universities (Larroucau et al.

(2015)). This kind of exercise was not possible in the past due to the computational time involved

in the black-box implementation.
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The efficiency gains also opened the possibility to simulate and evaluate the effects of policy

changes that could stress the system in the future. For instance, the impact of free-of-charge

access, the inclusion of professional and vocational institutions to the admission process, and the

implementation of admission quotas for underrepresented groups. All of these vital questions could

be handled by building structural models for which computational efficiency is crucial.

6. Conclusions

We investigate how the Chilean college admissions system works. There are two main features that

make the Chilean system different from the classic college admissions problem: (i) preferences of

colleges are not strict, and all students tied for the last seat of a program must be assigned; and

(ii) the system also considers an affirmative action that is solved sequentially after the Regular

process. Then, students who benefit from the affirmative action policies can be double-assigned,

introducing a series of inefficiencies in the assignment and enrollment processes. Even though the

authorities were aware of this problem, they couldn’t solve it because they relied in a black-box

software that couldn’t be updated to incorporate the affirmative action.

To determine which mechanism was used, we develop an algorithm that finds all stable allocations

satisfying the rules of the system, i.e. flexible quotas and non-discrimination of tied students. We

also introduce the notion of FQ-matching to account for these features, and we characterize its main

properties. We show that this mechanism leads to the optimal stable allocations satisfying flexible

quotas and non-discrimination, but it lacks monotonicity and strategy-proofness. Nevertheless, we

also show that our mechanism is SP-L, and since the Chilean college admissions problem is large,

the lack of SP is not a major concern.

By comparing the results of our algorithm with historical data we find that the algorithm that

has been used is a variation of the university-optimal stable assignment that satisfies flexible quotas

and non-discrimination. Even though the number of differences is small, we convinced DEMRE

to switch to the FQ-student optimal mechanism, which was finally adopted in 2015 after a pilot

version in 2014.
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Having identified the algorithm, we propose a new method to incorporate the affirmative action

that is based on treating regular and reserve seats as different programs. The unified approach to

solve the problem was adopted and implemented by DEMRE in 2016, after two years of analyzing

its potential impact. The results of the implementation in 2016, as well as the pilot results in 2014

and 2015, show that around 3% of the total number of students that are admitted each year benefit

from the unified assignment. From the students who actually benefited in 2016, 30.8% would not

have been assigned to any program under the old system, and 69.2% are students who improved

compared to what they would get under the old system. The benefited students have, on average,

lower scores and lower family incomes compared to the students that would have been assigned

under the old system.

In addition to its direct impact on students, the efficiency of our algorithm reduced the running

time by about two orders of magnitude relative to the old system, enabling the realization of

simulations to evaluate different policies oriented to make the admission process more fair and

inclusive. Finally, our method helped to improve the transparency of the system, and allowed other

policies to be implemented on top of it.

Certainly there is a lot of room for further improvement, since there are still many BEA vacancies

that are not used by any students. Nevertheless, we hope that the current results encourage the

Chilean authorities to keep improving the system, increasing the overall efficiency of the process

and giving more and better chances of admission to under-represented students.
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Appendix

Appendix A: Proofs

To ease exposition we introduce some more notation. For any feasible pair (c, a) ∈ V we write

cBa µ(a) if a is either unassigned or strictly prefers c to his assigned program in µ, while aBc µ(c)

means that c has not completed its vacancies or strictly prefers a to its worst assigned student.

Formally, we define

• cBa µ(a)⇔ the set µ(a) is either empty or it contains an element c′ <a c,

• aBc µ(c)⇔ the set µ(c) has fewer than qc elements or it contains an element a′ <c a

as well as the analog notions with non-strict preferences

• cDa µ(a)⇔ the set µ(a) is either empty or it contains an element c′ ≤a c,

• aDc µ(c)⇔ the set µ(c) has fewer than qc elements or it contains an element a′ ≤c a.

Proof (Theorem 1): a) Since µA assigns each student a to its most preferred program it is

obvious that it satisfies non-discrimination as well as stability, and µA(a) contains at most one

element. It remains to show that it satisfies quotas-up-to-ties, which follows directly from the

definition of µA and the fact that there are no a-dominated nodes. Indeed, for each program c

and a ∈ µA(c) the node (c, a) ∈ V is not a-dominated so that the set {a′ ∈ µA(c) : a′ >c a} cannot

contain qc or more elements.

b) We already observed that in general µC is stable and satisfies quotas-up-to-ties. Also no student

a can be simultaneously among the top qc applicants for two different programs: otherwise the one

which is less preferred by a would be c-dominated. Hence, µC(a) contains at most one element.

It remains to show that µC satisfies non-discrimination. Consider a student a ∈ µC(c) and a node

(c, a′) ∈ V with a′ ∼c a. By definition of µC we have that a is among the top qc applicants for c,

and then the same holds for a′ so that a′ ∈ µC(c).

Proof (Theorem 2): Let µ be a FQ-matching in Γ. Clearly the conditions for FQ-matching are

preserved when we remove a node not in µ. Hence, if we prove the first assertion (c, a) 6∈ µ it will

also follow that µ is a FQ-matching for Γ′. Now, if (c, a) is c-dominated there is a program c̃ >a c

for which a is top qc̃, and therefore (c, a) cannot belong to µ since otherwise (c̃, a) would be a

blocking pair. Similarly, if (c, a) is a-dominated, then there are qc or more applicants a′ >c a with

c as their top choice. If (c, a) ∈ µ, then all the pairs (c, a′) must also be in µ since otherwise we

would have a blocking pair, but this contradicts quotas-up-to-ties so that (c, a) ∈ µ is impossible

in this case too.

Let us prove conversely that any assignment µ that is a FQ-matching for Γ′ is also a FQ-matching

for Γ. The properties of quotas-up-to-ties and |µ(a)| ≤ 1 involve only the nodes in µ and are not
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affected by the addition of the node (c, a). Hence, it suffices to establish non-discrimination and

stability.

Non-discrimination. Since this property already holds for all the nodes in V \ {(c, a)} we must

only prove that it also holds for (c, a). Indeed, suppose that a is tied with some a′ ∈ µ(c). Recall

that (c, a) is strictly dominated, however it cannot be a-dominated since otherwise the same would

occur for a′ and it could not have been assigned to c. Hence, it must be the case that (c, a) is

c-dominated which means that a is among the top qc̃ applicants for some program c̃ >a c. But then

a must be assigned to an even better choice c′ ≥a c̃, since otherwise (c̃, a) would provide a blocking

pair in Γ′. Then a∈ µ(c′) for some c′ >a c and non-discrimination holds for (c, a) as claimed.

Stability. We already know that there are no blocking pairs in Γ′. Let us prove that (c, a) is not

a blocking pair in Γ. Suppose first that (c, a) is c-dominated so that a is top qc̃ on some program

c̃ >a c. In this case µ must assign a to some c′ ≥a c̃ since otherwise (c̃, a) would be a blocking pair

in Γ′, and therefore we do not have cBa µ(a). Similarly, if (c, a) is a-dominated there are qc or

more applicants a′ ranked strictly above a that have c as their top choice. All the nodes (c, a′) are

in Γ′ so that µ(c) must fill the quota qc with applicants at least as good as the lowest ranked of

these a′. Since this is still above a we do not have aBc µ(c). Combining both cases, we cannot have

cBa µ(a) and aBc µ(c), proving that (c, a) is not a blocking pair.

Proof (Theorem 3): We first observe that the Regular matching µA(ΓR) is the same as the

one obtained from the unified graph GU by setting the BEA quotas to 0, that is qBc = 0 for all

c∈C. Since increasing quotas only benefits students in the student-optimal allocation we have that

µA(ΓR)(a) ≤a µA(ΓU)(a) for all applicants a ∈ A. This already shows that all non-BEA students

are not worse off in µA(ΓU) as compared to µs
A.

Let us consider next the second stage in which BEA students compete for the programs in

which they were not admitted in the Regular process. Consider the residual graph Ĝ obtained after

running the Regular process on the unified instance ΓU . We note that all the nodes (c, a) where a

is shortlisted for the BEA scholarship and c <a µA(ΓR) are c-dominated and can be removed from

Ĝ. This further reduces the graph to Ḡ in which every BEA student keeps only the programs in

which he/she was not admitted in the Regular process. Then, the second stage process can be seen

as equivalent to running the matching over the residual graph Ḡ, this time with the regular quotas

set to 0, qRc = 0 for all c ∈C. Following a similar argument as in the previous case, we know that

µA(ΓB)(a)≤a µA(ΓU)(a) for all applicants a∈A. This shows that all BEA students are not worse

off in µA(ΓU) compared to µs
A.

A.1. Optimality

Theorem 4. The assignments µA and µC obtained from our procedure are FQ-matchings and are

optimal for students and programs respectively among the set of FQ-matchings. Moreover,
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• the allocation obtained from greedily assigning each students his top choice in G∗A is equivalent

to µA,

• the allocation obtained from greedily assigning each program its favorite students upon com-

pleting capacity in G∗C is equivalent to µC.

Proof (optimality): LetM be the set of nodes that belong to any FQ-matching. From Theorem

2 we know that the domination-free subgraph G∗ constructed by deleting both a-dominated and

c-dominated nodes contains all FQ-matchings, and therefore M⊆ G∗. Since we also know that

µA = µA(G∗, q) is a FQ-matching we get µA ⊆M⊆G∗. Finally, since µA(G∗, q) assigns each student

his top choice in G∗, we conclude that the top program for each applicant a is the same in M

and G∗. Similarly, µC(G∗, q) = µ∗C ⊆M⊆G∗, and since µC(G∗, q) assigns each program c its top

qc students, we have that the top qc choices for any program c are the same in M and G∗. This

yields in particular that µ̂C is an FQ-matching, concluding our proof.

The arguments for the other algorithms are essentially the same. Each of these algorithms com-

putes a reduced subgraph G∗ with M⊆G∗ and the resulting student-optimal and/or university-

optimal assignments are stable FQ-matchings so that they are contained in M. Hence the top

choices for applicants and/or programs are the same in M and G∗.

Appendix B: Notions of stability

As observed in Irving (1994) and Irving et al. (2000), when agents have non-strict preferences

the notions of blocking pair and stability admit three natural extensions: weak, strong and super

stability. For the case with no ties, it was shown that weakly stable matchings always exist but not

necessarily the others.

Formally, a matching µ is

(a) weakly stable if there is no pair (c, a)∈ V \µ such that cBa µ(a) and aBc µ(c).

(b) strongly stable if there is no pair (c, a)∈ V \µ such that cDa µ(a) and aDc µ(c) with one of

these preferences in the strict sense.

(c) super stable if there is no pair (c, a)∈ V \µ such that cDa µ(a) and aDc µ(c).

Clearly super stability implies strong stability which in turn implies weak stability, and the three

concepts collapse to stability when preferences are strict. We show next that for FQ-matchings

these three notions coincide.

Theorem 5. If an FQ-matching µ is weakly stable then it is super stable.

Proof: Let µ be a weakly FQ-matching and suppose by contradiction that it is not super stable:

there exists (c, a)∈ V \µ with cDa µ(a) and aDc µ(c). Since by assumption ≤a is a total order and

c 6∈ µ(a), any c′ ∈ µ(a) with c′ ≤a c satisfies also c′ <a c so that cBa µ(a). From weak stability it
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follows that aBc µ(c) cannot hold, so that |µ(c)| ≥ qc and there exists a′ ∈ µ(c) such that a′ ∼c a.

By non-discrimination it follows that a should have been assigned to a program at least as good

as c, which contradicts cBa µ(a).

Appendix C: Equivalence between FQ-matchings and L-stable score limits

FQ-matchings turn out to be the same as the allocations obtained from L-stable score limits

introduced in Biró and Kiselgof (2013). In their setting an applicant a ∈ A is characterized by

a set of integer scores sac that determine the preferences of the programs. Note that in a college

admission instance (G,q) we may define the score sac as the rank17 of student a in the preference

list of the program c so that both settings are basically equivalent.

Given a set of score limits l= (lc)c∈C , Biró and Kiselgof (2013) define a corresponding assignment

µl by letting (c, a)∈ µl if c is the most preferred program of student a for which he attains the score

limit, that is to say, sac ≥ lc and sac′ < lc′ for all c′ >a c. Let xl
c = |µl(c)| be the number of students

assigned to program c. A score limit l is called L-feasible if for each program c with |µl(c)| ≥ qc we

have |{(c, a) ∈ µl : sac > lc}| < qc, and is called L-stable if moreover any reduction of a score limit

lc > 0 leads to infeasibility.

L-feasibility is the analog of quotas-up-to-ties: a program may exceed its quota qc but only

to the extent that the last group of admitted students are tied with score equal to lc. Since µl

always satisfies non-discrimination and each student is assigned at most once, it follows that l

is L-feasible if and only if µl is an FQ-matching. The following result establishes the connection

between FQ-matchings and L-stable score limits.

Theorem 6. If l is an L-stable score limit then µl is a FQ-matching. Conversely, any FQ-matching

can be expressed as µ= µl for an L-stable score limit l.

Proof: Let l be L-stable and suppose that µl has a blocking pair (c, a) 6∈ µl. This means that

c prefers a over some of its currently matched students b ∈ µl(c) so that sac > sbc ≥ lc. Hence, a

attains the score limit lc and must have been assigned to c or better in µl, so that (c, a) cannot be

a blocking pair. Therefore, µl is a FQ-matching.

Now let µ be a FQ-matching and let lc be the rank sac of the qc-th student a ∈ µ(c), setting

lc = 0 if |µ(c)| < qc. We claim that µ = µl. Indeed, for each (c, a) ∈ µ we have that sac ≥ lc by

definition of lc, whereas stability implies sac′ < lc′ for all c′ >a c, so that (c, a) ∈ µl and therefore

µ⊆ µl. Conversely, let (c, a) ∈ µl. Then sac ≥ lc by non-discrimination a must be admitted to c or

better. Since, moreover, sac′ < lc′ for all c′ >a c it must be the case that a is precisely matched with

c and (c, a)∈ µ. This establishes the equality µ= µl. In particular µl is an FQ-matching which, as

noted before, is equivalent to the fact that l is L-feasible. In order to show that l is L-stable let us
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consider a program with lc > 0 and denote µ̃l the assignment obtained after reducing lc by one unit.

The property lc > 0 implies that the program had all its positions filled, namely |µ(c)| ≥ qc and

|{(c, a) ∈ µl : sac > lc}|< qc. After reducing the score limit to lc − 1 the set of students assigned to

program c increases and L-feasibility fails since |{(c, a)∈ µ̃l : sac > lc− 1}|= |µ(c)| ≥ qc. This proves

that l is L-stable completing the proof.

Appendix D: Implementation and complexity of the algorithms

The admission graph can be built in O(|V |) operations, while removing a node can be done in

constant time as it suffices to reassign the pointers and flags for its 4 adjacent nodes. We also need

the following procedures for detecting strictly dominated nodes:

a-domination: For each program c scan the corresponding row in the graph from the top ranked

student downwards, counting the students that place c at the top. When this counter reaches qc

continue scanning the row removing all nodes (c, a′) which are strictly below in the order <c.

c-domination: For each applicant a scan the corresponding column in the graph from the top

program downward and stop as soon as a program c is found for which a is among the top qc

candidates. Then continue scanning the column removing all subsequent nodes (c′, a) with c′ <a c.

Concerning the algorithm’s complexity we already noted that initializing the admission graph

takes O(|V |). Since removing a node changes the top preferences for students and programs, the

cycle must be repeated as long as strictly dominated nodes are found. However, each successful

cycle removes at least one node so there are at most |V | cycles, and in every iteration the procedures

for detecting strict dominations run in O(|V |) so that the overall complexity for the repeat is

O(|V |2). When these procedures do not find any strictly dominated node we have the domination-

free subgraph G∗ and we proceed to compute µA and µC by greedily assigning the top remaining

preferences. This final step takes O(|V |) operations. We summarize this discussion in the following

theorem.

Theorem 7. Our procedure computes FQ-matchings µA and µC in time O(|V |2).

Note that the overall time spent in removing nodes is bounded by O(|V |), and therefore the

quadratic complexity comes from the search of these dominated nodes. In fact there are instances

where this search takes indeed O(|V |2) operations. In AppendixF we present an alternative algo-

rithm that improves this complexity.

In Appendix A (Theorem 4) we show that there is no need to drop all dominated nodes to

obtain µA and µC . In fact, µA can also be obtained by greedily assigning each student to his top

choice in the admission graph G∗A, which is obtained by recursively dropping all a-dominated nodes.

Similarly, µC can be obtained from G∗C , which is obtained by erasing all c-dominated nodes. This

can reduce the computation time if only one of these assignments is needed.



Rios et al.: Improving the Chilean College Admissions System
34 Article submitted to Operations Research; manuscript no. 1

Appendix E: Additional examples

E.1. Example 1: Effect of allowing indifference in preferences

Table 6 compares the program assigned to each applicant for the case of strict preferences (first

two columns) and when there is a single tie and flexible quotas (last two columns). In parenthesis

we show the rank of the assigned program in the applicant’s preference list.

Table 6 Matchings with strict vs unstrict preferences.

Strict Unstrict

Applicant µA µC µA µC

a1 c5(1) c4(2) c5(1) c4(2)

a2 c4(3) c4(3) c2(2) c4(3)

a3 c4(3) c5(4) c3(2) c5(4)

a4 - - c4(2) -

a5 c3(2) c3(2) c4(1) c3(2)

a6 c3(3) c3(3) c2(2) c3(3)

a7 c2(4) c2(4) c3(3) c2(4)

a8 c2(2) c2(2) c1(1) c2(2)

a9 c1(2) c1(2) c2(1) c1(2)

The assignment µA allowing for ties and flexible quotas benefits considerably the students: 7

applicants improve the order of the preference on which they are assigned, one moves from being

unassigned to be selected in his second most desired program, and only one remains in the same

program. This result is in line with Balinski and Sönmez (1999), who observed that increasing the

quotas (in the fixed quota model) can never hurt a student under a student-optimal matching.

In contrast, in this example the assignment µC does not change when we move from strict to

non-strict preferences. This is not always the case and changes may occur if the university-optimal

matching happens to have a tie in the last vacancy of some program, so that a student may shift

to a different alternative inducing further shifts in a domino effect.

E.2. Example 2: Student-optimal FQ-matching is not monotone

Consider the admission graph of Figure 8 with program c2 indifferent between a4 and a5. Note

that (c1, a5) is strictly c-dominated and can be dropped. This gives G∗ from which we obtain the

matching µA (black nodes). As both a4 and a5 are tied in the last vacant, the student-optimal
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Figure 8 Admission graph with student-optimal FQ-matching.

c1

a1 a2 a3 a4 a5 a6 a7 a8
q1 = 3

c2 q2 = 4

Figure 9 Non-monotone student-optimal FQ-matching.

c1

a1 a2 a3 a4 a5 a6 a7 a8
q1 = 3

c2 q2 = 4

Figure 10 Admission graph with university-optimal FQ-matching.

c1

a1 a2
q1 = 1

c2 q2 = 1

matching µA with flexible quotas assigns both of them to program c2 exceeding the quota by one

unit.

Suppose now that a5 improves its ranking for program c1 so that a5 >c1 a3, while everything

else remains the same as shown in Figure 9. In this case node (c1, a3) is applicant dominated as

there are 3 better ranked applicants whose first preference is c1, and it is then removed. Nodes

(c2, a4) and (c2, a5) are also applicant dominated as now the only remaining choice for a3 is c2.

After cleaning all dominated nodes and assigning each student to his top remaining preference we

obtain µA depicted by the black nodes in Figure 9. Thus, a5 improved its ranking in c1 but moved

from being assigned in c2 to be unassigned. This shows that the student-optimal mechanism µA is

not monotone.

E.3. Example 3: University-optimal FQ-matching is not monotone

Consider the admission graph of Figure 10, where the black nodes represent the university-optimal

assignment.

Suppose that a2 decreases its ranking in c2 so that a2 <c2 a1. The new admission graph and

the resulting university-optimal assignment are shown in Figure 11. Comparing both results we

observe that a2 moves from being assigned in c2 (his second preference) to be matched in c1 (his top

preference). Thus, being worst ranked by c2 helped him to improve his assignment, and therefore

the university-optimal assignment is not applicant-monotone.
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Figure 11 Non-monotone university-optimal FQ-matching.

c1

a1 a2
q1 = 1

c2 q2 = 1

Figure 12 Student-optimal FQ-matching is not strategy-proof.

c1

a1 a2 a3 a4 a5 a6 a7 a8
q1 = 3

c2 q2 = 4

Figure 13 University-optimal FQ-matching is not strategy-proof.

c1

a1 a2
q1 = 1

c2 q2 = 1

E.4. Example 4: Student-optimal FQ-matching is not strategy-proof

In the admission graph of Figure 9 applicant a5 was unassigned under µA. Suppose that this

applicant lies when he states his preferences, applying only to program c2. The resulting admission

graph and µA are presented in Figure 12. We observe that in this case each student is assigned

to his top preference under µA. In particular, by lying about his true preferences, a5 moves from

being unassigned to be matched in c2. This shows that the student-optimal matching with flexible

quotas is not strategy-proof.

E.5. Example 5: University-optimal FQ-matching is not strategy-proof

Consider the university-optimal matching µC in Figure 10 where both students are assigned to

their second preference. If a2 lies and only applies to c1, the results returned by µA and µC are the

same since node (c1, a1) is program dominated, and both students are assigned to their top choice.

Thus c2 can improve his assignment in µC by not revealing his true preferences.

E.6. Example 6: Unified admission process

Consider the admission graph in Figure 14 and assume that the students a1 and a4 are shortlisted

for the scholarship. In this context, the quotas of program c are given by a pair (qRc , q
B
c ), where

qRc is the number of seats offered in the Regular process and qBc the vacancies offered in the BEA

process.

In the sequential procedure the Regular process is run first with admission graph GR in Figure

14 and quotas qc = qRc , which gives the allocation18 µ(ΓR) = {(c1, a4), (c1, a5), (c2, a2)}. Then, the
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Figure 14 Original admission graph GR.

c1

a1 a2 a3 a4 a5
q1 = (2,1)

c2 q2 = (1,1)

Figure 15 BEA admission graph GB .

c1

a1 a2 a3 a4 a5
q1 = qB1 = 1

c2 q2 = qB2 = 1

Figure 16 The unified admission graph GU.

cB1

a1 a2 a3 a4 a5
qB1 = 1

cR1 qR1 = 2

cB2 qB2 = 1

cR2 qR2 = 1

BEA admission process ΓB = (GB, qB) is built considering only the shortlisted students AB ⊆A and

the preferences where they were wait-listed in the Regular process. Continuing with the example,

Figure 15 shows the corresponding graph GB.

The resulting allocation for the BEA process is µ(ΓB) = {(c1, a1), (c2, a4)}, and therefore student

a4 is assigned to c1 in the Regular process and to c2 in the BEA process, while a3 remains unas-

signed. Independently of which option is taken by a4, a vacancy will be lost that could have been

otherwise assigned to a3.

The unified graph of this problem is shown in Figure 16. The allocation obtained from applying

any of the two algorithms to the graph ΓU is

µA(ΓU) = µC(ΓU) =
{

(cR1 , a3), (c
R
1 , a5), (c

B
1 , a1), (c

R
2 , a2), (c

B
2 , a4)

}
.

In this matching all applicants are assigned and no vacancies are lost. More importantly, every

student is either equal or better off than in the sequential assignment.

Appendix F: Faster algorithm for FQ-matchings

An observation that might be exploited to improve the previous algorithms is that not all dominated

nodes need to be removed. For instance, the greedy assignment µC computed from the original
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graph in Figure 1 assigns at most one program to each student and therefore it gives already a

FQ-matching, without removing any of the c-dominated nodes in G. Also, for the student-optimal

assignment µA not all a-dominated nodes will induce violations of the quotas-up-to-ties. A natural

approach would then consist in dropping only those nodes that are causing these violations. This

is similar to the strategy used in the deferred-acceptance algorithm of Gale and Shapley (1962).

We describe the idea for the student-optimal assignment µA. For each program c we set up an

ordered list Lc in which we will sequentially add and remove applicants, with a counter c.size to

record the size of the list. Initially these lists are empty with c.size= 0. For each a ∈A we set a

pointer a.top to its most preferred program and, if this pointer is not null, we push a into a stack

S that contains the applicants with no program assigned yet.

We iterate as follows. We pop a student a from the stack S and insert it in the ordered list

Lc of the most preferred program c, increasing c.size by one unit. If this counter exceeds qc we

check quotas-up-to-ties and eventually remove the last group of students in Lc to ensure that this

property holds, by using the following procedure.

check-quotas-up-to-ties: Find the set Tc of applicants tied in the last position in Lc. If

c.size≤ qc + |Tc| we keep the list as it is, otherwise each node (c, b) for b ∈ Tc is a-dominated so

we remove b from Lc and update b.top to its next most preferred program c′ <b c. If such c′ exists

we push b back into the stack S and otherwise we leave b unassigned. If the tie Tc is removed we

update c.size← c.size− |Tc|.

Algorithm 1 Fast student-optimal FQ-matching

1: read instance and build admission graph

2: initialize admission lists Lc and stack S

3: while (S is non-empty) do

4: a← pop(S)

5: c← a.top

6: insert a into Lc and increase c.size by one

7: if (c.size > qc) then

8: check-quotas-up-to-ties

9: end if

10: end while

11: return assignment µA represented by the final lists Lc
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To present our next result we let rc be the largest size of a tie in the preorder ≤c so that

|µ(c)| ≤ qc + rc in any assignment satisfying quotas-up-to-ties. We denote q̄ the maximum of the

quantities qc + rc and r̄ the maximum of rc.

Theorem 8. Algorithm 1 computes a FQ-matching µA in time O((r̄+ log q̄)|V |).

Proof: To prove that the algorithm is finite we observe that each while cycle inserts a student

into a new program, in decreasing order, so that the number of times a student may be reassigned

is bounded by the number of nodes in its corresponding column in Γ. It follows that the algorithm

terminates after at most |V | cycles. Upon termination we have each student assigned to its most

preferred program in the instance Γ̃ that contains all the nodes not removed during the execution,

so that µA is the corresponding student-optimal assignment. Now, by construction the lists Lc

satisfy quotas-up-to-ties throughout the algorithm, so that the computed µA is a FQ-matching for

Γ̃. Since the nodes removed by the algorithm were all a-dominated, Theorem 2 guarantees that µA

is also a FQ-matching for Γ.

In order to estimate the worst case complexity let us compute the number of basic operations

per cycle. The insertion operation can be executed in time O(log |Lc|) which is bounded by O(log q̄)

since Lc satisfy quotas-up-to-ties. The rest of the cycle deals with Tc which can have up to rc

elements, and therefore the number of operations involved is O(r̄). Since there are at most |V |

cycles this yields the announced worst case complexity.

Appendix G: Enrollment

As we have discussed before, there exists the possibility that the inefficiencies generated by the

double assignment could be resolved in the subsequent enrollment process. The intuition behind

this is that after the assignment is announced, students must decide whether or not to enroll in

the program they were assigned, and BEA students with double-assignment must choose only one

program to enroll. Students who decide to enroll have three days to complete the process, which

is called “First Period of Enrollment” (FPE). If a student decides not to enroll (either because

the student has double assignment and/or opted for an outside option), his seat can be used by

a wait-listed student. This can happen during the “Second Period of Enrollment” (SPE), which

takes place right after the FPE. However, the SPE only lasts for two days, and therefore programs

don’t have much time to call wait-listed students and offer them admission. In addition, to speed

up the enrollment process, universities announce more vacancies (normal vacancies plus overcrowd

vacancies) than the number of students they want to enroll (normal vacancies). Every student has

the right to enroll into their assigned program, but programs won’t call wait-listed students unless

the number of enrolled students is less than the normal vacancies. Hence, students who are not
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initially assigned are not guaranteed to be admitted into a program even if they are in the first

place of the wait list and assigned students decide not to enroll during the FPE.

In Table 7 we show assignment and enrollment statistics for the years considered in our study

(2014-2016). We observe that around 75% of those students who are admitted end up enrolling in

a program that is part of the centralized system. Among those who enroll, we find that most of

them do it in the program where they were assigned by the clearinghouse. However, around 3.5%

of the students enroll in a program they prefer compared to the one assigned by the clearinghouse,

mostly thanks to the SPE. Finally, we find that less than 1% enroll in a less preferred program.

We don’t have a clear explanation for this behavior.

Table 7 Enrollment - General

2014 2015 2016

Admitted Total 95,793 97,844 100,972

Enrolled

As assigned 72,006 74,030 75,909

Better 2,664 2,706 2,676

Worst 1,031 708 435

Total 75,701 77,444 79,020

In Figure 17 we show how the probability of enrollment in any program (fraction of Enrolled

Total and Admitted Total) decreases with the preference where the student was admitted. This

illustrates that being assigned to a higher preference increases the probability of enrolling in a

program that is part of the system, which in turn justifies the relevance of admitting students in

a preference that is as good as possible for them.
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Figure 17 Share of students enrolled by assignment preference
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In terms of the impact of the unified assignment, in Table 8 we compare the results of the unified

allocation (simulated in 2014-2015 and actual in 2016) with the actual enrollment decisions of

students. The idea is to assess whether the enrollment process leads to the same results as the

ones obtained with the unified allocation. We find that, among students who could have improved

in their assignment if our policy were in place in 2014 and 2015, only a third of them get a

better allocation in the enrollment process. In contrast, almost all of them get enrolled in a better

assignment in 2016 (when our policy was in place). This suggests that the inefficiencies generated

by the double assignment are not completely solved in the enrollment process19.
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Table 8 Enrollment

2014 2015 2016

Improved

Admitted - Total 1,737 1,915 1,749

Enrolled - As assigned 431 469 1,392

Enrolled - Better 44 38 34

Enrolled - Worst 802 909 13

Enrolled - Total 1,277 1,416 1,439

New admitted

Admitted - Total 568 672 777

Enrolled - As assigned 146 172 446

Enrolled - Better 20 38 17

Enrolled - Worst 10 15 0

Enrolled - Total 191 249 467

Endnotes

1. In Chile, students apply directly to a major in a given university, such as Medicine in the

University of Chile. We refer to program as a pair major-university.

2. In addition to what we describe in this paper, each university has special admission programs

such as for athletes, racial minorities, among others. In addition, there are other centralized admis-

sion tracks that were added to the system in 2017 that we don’t address in this paper for simplicity.

3. BEA students are indifferent between regular and reserve seats because they obtain the schol-

arship regardless of how they were admitted, and there are no differences between these types of

vacancies.

4. The Consejo de Rectores de las Universidades Chilenas (CRUCH) is the institution that gathers

these universities and is responsible to drive the admission process, while DEMRE is the organism

in charge of applying the selection tests and carrying out the assignment of students to programs.
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5. Some programs such as music, arts and acting, may require additional aptitude tests.

6. Respecting some basic criteria defined by CRUCH.

7. To be more precise, the system differentiates between normal vacancies and overcrowd vacan-

cies. During the enrollment process, if an admitted student does not enroll then wait-listed students

are offered admission only up to the normal vacancies. Hence, only those students who were admit-

ted before the enrollment process can use overcrowd vacancies.

8. This was directly translated from the document “Normas, Inscripcion y Aspectos Importantes

del Proceso de Admision, 2013” CRUCH (2013), page 8.

9. For instance, when we start collaborating in 2013 there were 1,162 students with double assign-

ment, which is equivalent to around 10% of the total number of BEA students that are admitted.

10. In Appendix G we compare our results using enrollment data and we show that the inefficiencies

introduced by the double assignment are not solved in the subsequent enrollment process.

11. This example is a small variation of the example in Figure 1, where program c2 is indifferent

between a2 and a6.

12. In Appendix D we show that the complexity of this procedure is O(|V |2).

13. As long as we consider applications as fixed, allowing for ties and flexible quotas will weakly

increase the number of vacancies per program, resulting in a Pareto improvement for students.

14. In a merit based admission system tie breaking rules that rely on randomness can be contro-

versial and perceived as unfair from the perspective of students.

15. For example, the University of Chile requires applicants to apply to at most 4 programs, and

these applications must be listed within the top 4 positions in the applicant’s list.

16. In Figure 17 (see Appendix G) we show that the share of students that enroll after being

assigned in one of their 10 listed preferences is decreasing in the number of assigned preference.

17. The students in the least preferred group have rank 1, the next group is ranked 2, and so on.

18. In this example the student-optimal and the university-optimal algorithms return the same

allocation.
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19. To be able to fully measure the impact of our policy change in the enrollment process, we

would have to structurally model the application and enrollment behavior of students. However,

the previous statistics are strong evidence that the enrollment process does not fully solve the

inefficiencies generated by the double assignment.
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